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Debugging on Linux
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Print Debugging

Most often, debugging is done via print...

...But that scales poorly
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GDB

A Debugger (such as GDB) can help here
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What is GDB?

GDB is a tool to inspect your program while it is running. It allows:
I to stop program execution at any point
I step through the program
I print the value of variables
I modify variables
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Usage

Before running a program in GDB, it needs to be compiled with debug symbol.
I Available compiler flags flags are -g, -g3, -ggdb3

I -ggdb3 gives the most debug information
The program can then be run under gdb: gdb ./a.out
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An Example. . .
1 # include < stdio .h>
2 # include < stdbool .h>
3 # include < tgmath .h>
4
5 bool is_prime (int number ) { /* snip */ }
6
7 int
8 main(int argc , char ** argv) {
9 int number ;

10 scanf ("%d", & number );
11 if ( is_prime ( number ))
12 printf ("%d: prime \n", number );
13 else
14 printf ("%d: not prime \n", number );
15 return 0;
16 }
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An Example. . .

$ gcc -ggdb3 simple .c -lm
$ gdb ./a.out
GNU gdb (GDB) 8.3.1
Copyright (C) 2019 Free Software Foundation , Inc.
... snip ...
For help , type "help".
Type " apropos word" to search for commands related to "word"...
Reading symbols from ./a.out ...
(gdb)
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The Start Command

start starts program execution and stops it at the beginning of main

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18 ) at simple .c:16
16 main(int argc , char ** argv) {
(gdb)
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The Step Command

step executes the next line. If there’s a function, it will step into it.

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18 ) at simple .c:16
16 main(int argc , char ** argv) {
(gdb) step
18 scanf ("%d", & number );
(gdb)
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The Next Command
next executes the next line. If there’s a function, DO NOT step into it.

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18 ) at simple .c:16
16 main(int argc , char ** argv) {
(gdb) step
18 scanf ("%d", & number );
(gdb) next
1234567
19 if ( is_prime ( number ))
(gdb)
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The Print Command

print prints the contents of variables. It also allows calling functions.

(gdb) step
18 scanf ("%d", & number );
(gdb) next
1234567
19 if ( is_prime ( number ))
(gdb) print number
$1 = 1234567
(gdb) print is_prime ( number )
$2 = false
(gdb)
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The List Command
list lists the 10 lines of source code surrounding the current one

(gdb) next
1234567
19 if ( is_prime ( number ))
(gdb) list
14
15 int
16 main(int argc , char ** argv) {
17 int number ;
18 scanf ("%d", & number );
19 if ( is_prime ( number ))
20 printf ("%d: prime \n", number );
21 else
22 printf ("%d: not prime \n", number );
23 return 0;
(gdb)
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The Break Command
break adds a break point, which will stop program execution when reached

(gdb) list
14
15 int
16 main(int argc , char ** argv) {
17 int number ;
18 scanf ("%d", & number );
19 if ( is_prime ( number ))
20 printf ("%d: prime \n", number );
21 else
22 printf ("%d: not prime \n", number );
23 return 0;
(gdb) break 22
Breakpoint 2 at 0 x555555555214 : file simple .c, line 22.
(gdb)
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The Continue Command

continue continues program execution until either a breakpoint is hit or the
programs exits

(gdb) break 22
Breakpoint 2 at 0 x555555555214 : file simple .c, line 22.
(gdb) continue
Continuing .

Breakpoint 2, main (argc =1, argv =0 x7fffffffdf08 ) at simple .c:22
22 printf ("%d: not prime \n", number );
(gdb)
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The Quit Command
quit quits GDB, terminating the program

(gdb) continue
Continuing .

Breakpoint 2, main (argc =1, argv =0 x7fffffffdf08 ) at simple .c:22
22 printf ("%d: not prime \n", number );
(gdb) quit
A debugging session is active .

Inferior 1 [ process 7431] will be killed .

Quit anyway ? (y or n) y
$
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Text User Interface

GDB can also be run with a TUI: gdb -tui ./a.out
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Text User Interface
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Quick Warning

The following is slide code and output, therefore all source code and program
output is heavily shortend.
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Valgrind

I Collection of usefull debugging tools
I Memcheck
I Helgrind

I Works on any executable
I Doesn’t require recompilation
I Output gets more readable with debug symbols!
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How to use Valgrind?

I (optionally) Recompile the program with debug symbols
I Choose a tool
I Run the program under valgrind: valgrind --tool=$TOOL ./a.out
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Memcheck

I finds common memory errors
I Use after free
I Use of uninitialised values
I Memory leaks
I . . . and many more

I Usage: valgrind [--leak-check=full] ./a.out
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Use After Free

Use After Free Usage of a pointer after it has been free()’d
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Use After Free

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *ip;
6 ip = malloc ( sizeof (int));
7 free(ip);
8 *ip = 3;
9 return 0;

10 }
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Use After Free

==4474== Memcheck , a memory error detector
.. snip ..
==4474== Invalid write of size 4
==4474== at 0 x109176 : main (uaf.c:8)
==4474== Address 0 x4a86040 is 0 bytes inside a block of size 4 free ’d
==4474== at 0 x48399AB : free ( vg_replace_malloc .c :540)
==4474== by 0 x109171 : main (uaf.c:7)
==4474== Block was alloc ’d at
==4474== at 0 x483877F : malloc ( vg_replace_malloc .c :309)
==4474== by 0 x109161 : main (uaf.c:6)
==4474==
.. snip ..
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Uninitialized Values

Unitialized Values Use of a variable or memory before it has been initialized
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Uninitialized Values

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 int i;
6 if (i)
7 printf ("Hui\n");
8 else
9 printf ("Pfui\n");

10 return 0;
11 }

26



GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Uninitialized Values

==7096== Memcheck , a memory error detector
.. snip ..
==7096== Conditional jump or move depends on uninitialised value (s)
==7096== at 0 x10914C : main (ui.c:6)
==7096==
Pfui
==7096==
.. snip ..
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Memory Leaks

Memory Leak A piece of memory is malloc()’d, but never free()’d
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Memory Leaks

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *p;
6 p = malloc ( sizeof (int));
7 return 0;
8 }
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Memory Leaks
==7219== Memcheck , a memory error detector
.. snip ..
==7219== HEAP SUMMARY :
==7219== in use at exit : 4 bytes in 1 blocks
==7219== total heap usage : 1 allocs , 0 frees , 4 bytes allocated
==7219==
==7219== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==7219== at 0 x483877F : malloc ( vg_replace_malloc .c :309)
==7219== by 0 x109151 : main (ms.c:6)
==7219==
==7219== LEAK SUMMARY :
==7219== definitely lost: 4 bytes in 1 blocks
==7219== indirectly lost: 0 bytes in 0 blocks
==7219== possibly lost: 0 bytes in 0 blocks
==7219== still reachable : 0 bytes in 0 blocks
==7219== suppressed : 0 bytes in 0 blocks
.. snip ..
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Helgrind

I finds common threading problems
I Potential lock order inversions
I Race conditions

I Has problems with lock-free data structures/algorithms
I Usage: valgrind --tool=helgrind ./a.out
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Race Condition

Race Condition Several Threads try to modify the same variable at the same
time yielding unexpected results
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Race Condition
1 # include < pthread .h>
2
3 volatile int inc;
4
5 void *
6 thread ( void *arg __attribute__ (( unused ))) {
7 for (int i = 0; i < 65536; i++)
8 inc ++;
9 return NULL;

10 }
11
12 int
13 main(int argc , char ** argv) {
14 pthread_t t1 , t2;
15 pthread_create (&t1 , NULL , thread , NULL);
16 pthread_create (&t2 , NULL , thread , NULL);
17 /* snip */
18 }

33



GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race Condition
==7454== Helgrind , a thread error detector
.. snip ..
==7454== Possible data race during read of size 4 at 0 x10C03C by thread #3
==7454== Locks held: none
==7454== at 0 x10915A : thread (rc.c:8)
==7454== by 0 x483F876 : mythread_wrapper ( hg_intercepts .c :389)
==7454== by 0 x48A84CE : start_thread (in /usr/lib/ libpthread -2.30. so)
==7454== by 0 x49C02D2 : clone (in /usr/lib/libc -2.30. so)
==7454==
==7454== This conflicts with a previous write of size 4 by thread #2
==7454== Locks held: none
==7454== at 0 x109163 : thread (rc.c:8)
==7454== by 0 x483F876 : mythread_wrapper ( hg_intercepts .c :389)
==7454== by 0 x48A84CE : start_thread (in /usr/lib/ libpthread -2.30. so)
==7454== by 0 x49C02D2 : clone (in /usr/lib/libc -2.30. so)
==7454== Address 0 x10c03c is 0 bytes inside data symbol "inc"
.. snip ..
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Lock Order Inversion

Lock Order Inversion Two threads try to acquire two locks in opposite orders
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Lock Order Inversion
6 void *
7 thread1 ( void *arg __attribute__ (( unused ))) {
8 pthread_mutex_lock (& lock1 );
9 pthread_mutex_lock (& lock2 ); // Lock -Order - Inversion between here ...

10 pthread_mutex_unlock (& lock2 );
11 pthread_mutex_unlock (& lock1 );
12 return NULL;
13 }
14
15 void *
16 thread2 ( void *arg __attribute__ (( unused ))) {
17 pthread_mutex_lock (& lock2 );
18 pthread_mutex_lock (& lock1 ); // ... and here !
19 pthread_mutex_unlock (& lock1 );
20 pthread_mutex_unlock (& lock2 );
21 return NULL;
22 }
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Lock Order Inversion
==8617== Thread #3: lock order "0 x10C080 before 0 x10C0C0 " violated
==8617==
==8617== Observed ( incorrect ) order is: acquisition of lock at 0 x10C0C0
==8617== at 0 x483CC3F : mutex_lock_WRK ( hg_intercepts .c :909)
==8617== by 0 x1091C3 : thread2 (loi.c:17)
.. snip ..
==8617== followed by a later acquisition of lock at 0 x10C080
==8617== at 0 x483CC3F : mutex_lock_WRK ( hg_intercepts .c :909)
==8617== by 0 x1091CF : thread2 (loi.c:18)
.. snip ..
==8617== Required order was established by acquisition of lock at 0 x10C080
==8617== at 0 x483CC3F : mutex_lock_WRK ( hg_intercepts .c :909)
==8617== by 0 x109180 : thread1 (loi.c:8)
.. snip ..
==8617== followed by a later acquisition of lock at 0 x10C0C0
==8617== at 0 x483CC3F : mutex_lock_WRK ( hg_intercepts .c :909)
==8617== by 0 x10918C : thread1 (loi.c:9)
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Sanitizer

I Error checking compiled into binary
I Thread Sanitizer
I Address Sanitizer
I Undefined Behaviour Sanitizer

I needs recompilation!
I Largely covers the same things as valgrind
I Available for both GCC and LLVM
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How to use Sanitizer?

I Recompile the program with the Sanitizer enabled
I Needs to be enabled everywhere
I Usage: gcc -ggdb3 -fsanitize=$SANITIZER

I run the resulting binary
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Sanitizer - Address

I Checks for all kinds of address violations
I Also includes leak detector
I Similiar to valgrind’s Memcheck

I Can detect some bugs memcheck can’t
I Can’t detect some bugs memcheck can
I Provides more information

I Usage gcc -fsanitize=address
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Use After Free

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *ip;
6 ip = malloc ( sizeof (int));
7 free(ip);
8 *ip = 3;
9 return 0;

10 }
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Use After Free
==4299== ERROR : AddressSanitizer : heap -use -after -free on address 0 x602000000010

at pc 0 x5630686c61d9 bp 0 x7ffda2c5a820 sp 0 x7ffda2c5a810
WRITE of size 4 at 0 x602000000010 thread T0

#0 0 x5630686c61d8 in main / home /dcm / misc / debugging -on - linux / code / bugtype /
uaf.c:8

0 x602000000010 is located 0 bytes inside of 4-byte region [0 x602000000010 ,0
x602000000014 )

freed by thread T0 here:
#1 0 x5630686c61a1 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

uaf.c:7

previously allocated by thread T0 here:
#1 0 x5630686c6191 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

uaf.c:6
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Use After Free
SUMMARY : AddressSanitizer : heap -use -after -free /home/dcm/misc/debugging -on -

linux /code/ bugtype /uaf.c:8 in main
Shadow bytes around the buggy address :

0 x0c047fff7fb0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fc0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fd0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fe0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7ff0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0 x0c047fff8000 : fa fa[fd]fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8010 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8020 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8030 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8040 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8050 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
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Memory Leak

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *p;
6 p = malloc ( sizeof (int));
7 return 0;
8 }

44



GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leaks

=================================================================
==4545== ERROR : LeakSanitizer : detected memory leaks

Direct leak of 4 byte(s) in 1 object (s) allocated from:
#0 0 x7f9b5971faca in __interceptor_malloc / build / gcc/ src/ gcc/ libsanitizer /

asan / asan_malloc_linux .cc :144
#1 0 x55d960688171 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

ms.c:6
#2 0 x7f9b5946f152 in __libc_start_main (/ usr/ lib/ libc .so .6+0 x27152 )

SUMMARY : AddressSanitizer : 4 byte(s) leaked in 1 allocation (s).
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Buffer Overflow

Buffer Overflow Reading or writing memory outside of an allocated buffer

46



GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Buffer Overflow

1 int
2 main(int argc , char ** argv) {
3 int arr [10];
4 arr [11] = 1;
5 return 0;
6 }
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Buffer Overflow
==4464== ERROR : AddressSanitizer : stack -buffer - overflow on address 0

x7ffe66905e4c at pc 0 x564ce591325c bp 0 x7ffe66905dd0 sp 0 x7ffe66905dc0
WRITE of size 4 at 0 x7ffe66905e4c thread T0

#0 0 x564ce591325b in main / home /dcm / misc / debugging -on - linux / code / bugtype /
bo.c:5

#1 0 x7f0a22d6b152 in __libc_start_main (/ usr/ lib/ libc .so .6+0 x27152 )
#2 0 x564ce59130ad in _start (/ home / dcm/ misc / debugging -on - linux / code /

bugtype /a. out +0 x10ad )

Address 0 x7ffe66905e4c is located in stack of thread T0 at offset 92 in frame
#0 0 x564ce5913188 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

bo.c:3

This frame has 1 object (s):
[48 , 88) ’arr ’ (line 4) <== Memory access at offset 92 overflows this

variable
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Sanitizer - Thread

I Detects common threading problems
I Similiar to valgrind’s Helgrind
I Always run programs with TSAN_OPTIONS=second_deadlock_stack=1

I $ TSAN_OPTIONS=second_deadlock_stack=1 ./a.out

I Usage gcc -fsanitize=thread
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Lock Order Inversion
6 void *
7 thread1 ( void *arg __attribute__ (( unused ))) {
8 pthread_mutex_lock (& lock1 );
9 pthread_mutex_lock (& lock2 ); // Lock -Order - Inversion between here ...

10 pthread_mutex_unlock (& lock2 );
11 pthread_mutex_unlock (& lock1 );
12 return NULL;
13 }
14
15 void *
16 thread2 ( void *arg __attribute__ (( unused ))) {
17 pthread_mutex_lock (& lock2 );
18 pthread_mutex_lock (& lock1 ); // ... and here !
19 pthread_mutex_unlock (& lock1 );
20 pthread_mutex_unlock (& lock2 );
21 return NULL;
22 }
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Lock Order Inversion
WARNING : ThreadSanitizer : lock -order - inversion ( potential deadlock ) (pid =7033)

Cycle in lock order graph : M9 (0 x55fc4d1620a0 ) => M10 (0 x55fc4d1620e0 ) => M9

Mutex M10 acquired here while holding mutex M9 in thread T1:
#1 thread1 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c:9

Mutex M9 previously acquired by the same thread here:
#1 thread1 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c:8

Mutex M9 acquired here while holding mutex M10 in thread T2:
#1 thread2 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c :18

Mutex M10 previously acquired by the same thread here:
#1 thread2 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c :17
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Race Condition
1 # include < pthread .h>
2
3 volatile int inc;
4
5 void *
6 thread ( void *arg __attribute__ (( unused ))) {
7 for (int i = 0; i < 65536; i++)
8 inc ++;
9 return NULL;

10 }
11
12 int
13 main(int argc , char ** argv) {
14 pthread_t t1 , t2;
15 pthread_create (&t1 , NULL , thread , NULL);
16 pthread_create (&t2 , NULL , thread , NULL);
17 /* snip */
18 }
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Race condition
WARNING : ThreadSanitizer : data race (pid =11607)

Read of size 4 at 0 x559e8e885074 by thread T2:
#0 thread / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c:8

Previous write of size 4 at 0 x559e8e885074 by thread T1:
#0 thread / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c:8

Location is global ’inc ’ of size 4 at 0 x559e8e885074 (a.out +0 x000000004074 )

Thread T2 (tid =11610 , running ) created by main thread at:
#1 main / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c :16

Thread T1 (tid =11609 , finished ) created by main thread at:
#1 main / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c :15
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Sanitizer - Undefined Behaviour

I Detects undefined behaviour in C
I Doesn’t cover undefined behaviour related to memory
I Usage gcc -fsanitize=undefined
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Undefined Bitshifts

Undefined Bitshift Bitshifts larger than the width of the integer type
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Undefined Bitshifts

1 int
2 main(int argc , char ** argv) {
3 int i = 32;
4 int j = 0 xCAFFEE ;
5 j = j << i;
6 return 0;
7 }
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Undefined Bitshifts

ud.c :5:9: runtime error : shift exponent 32 is too large for 32- bit type ’int ’
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Strace

I Shows all system calls made by a program
I Allows debugging of everything File related

I Which files are used by a program?
I Where does a program search for files?
I What does a program do with a file?

I Usage: strace ./a.out
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Some important Linux Systemcalls
System Call Function Return Value
openat Opens a file A filedescriptor for the file
close Close a file 0
read Reads from a file Number of bytes read
write Writes to a files Number of bytes written
mmap Maps a file into memory Pointer to memory
socket Creates a new socket A filedescriptor for the socket
clone Spawn new thread/process ID of the newly create Process/Thread
execve Load new Program 0
exit_group Exit N/A
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An Example. . .

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 printf (" Hello World !");
6 return 0;
7 }
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An Example. . .

$ strace ./a.out > /dev/null
execve ("./a.out", ["./a.out"], 0 x7ffee24755b0 /* 47 vars */) = 0
brk(NULL) = 0 x55fd00b9c000
--snip --
fstat (1, { st_mode = S_IFCHR |0666 , st_rdev = makedev (0x1 , 0x3), ...}) = 0
ioctl (1, TCGETS , 0 x7fff3fb75ac0 ) = -1 ENOTTY ( Inappropriate ioctl for

device )
brk(NULL) = 0 x55fd00b9c000
brk (0 x55fd00bbd000 ) = 0 x55fd00bbd000
write (1, " Hello World !", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++
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Filtering output

I strace allows for filtering output by syscall
I Syntax: strace -e $ARGUMENT

I ARGUMENT should be a comma seperated list of systemcalls
I if a syscall is prefixed by !, it means all systemcalls but it
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An Example. . .

$ strace -e write ./a.out
write (1, " Hello World !", 12 Hello World !) = 12
+++ exited with 0 +++
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Files associated with File descriptors

I Enabled by -y

I Will show the file associated with each file descriptor
I /dev/pts/* is standart output
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An Example

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 FILE *f = fopen ("/tmp/test", "w+");
6 fprintf (f, " Hello \n");
7 fclose (f);
8 printf ("Done !\n");
9 return 0;

10 }
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An Example

$ strace -y -e openat ,write , close ./a.out >/dev/null
openat (AT_FDCWD , "/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC ) = 3</ etc/ld.so.cache >
close (3 </ etc/ld.so.cache >) = 0
openat (AT_FDCWD , "/usr/lib/libc.so .6", O_RDONLY | O_CLOEXEC ) = 3</ usr/lib/libc

-2.30. so >
close (3 </ usr/lib/libc -2.30. so >) = 0
openat (AT_FDCWD , "/tmp/test", O_RDWR | O_CREAT |O_TRUNC , 0666) = 3</ tmp/test >
write (3 </ tmp/test >, " Hello \n", 6) = 6
close (3 </ tmp/test >) = 0
write (1 </ dev/null >, "Done !\n", 6) = 6
+++ exited with 0 +++
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Thank you for your attention!

Question?
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