
GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Debugging on Linux

1

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Print Debugging

Most often, debugging is done via print...

...But that scales poorly

2

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

GDB

A Debugger (such as GDB) can help here

3

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

What is GDB?

GDB is a tool to inspect your program while it is running. It allows:
I to stop program execution at any point
I step through the program
I print the value of variables
I modify variables

4

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Usage

Before running a program in GDB, it needs to be compiled with debug symbol.
I Available compiler flags flags are -g, -g3, -ggdb3

I -ggdb3 gives the most debug information
The program can then be run under gdb: gdb ./a.out

5

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example. . .
1 # include < stdio .h>
2 # include < stdbool .h>
3 # include < tgmath .h>
4
5 bool is_prime (int number) { /* snip */ }
6
7 int
8 main(int argc , char ** argv) {
9 int number ;

10 scanf ("%d", & number);
11 if (is_prime (number))
12 printf ("%d: prime \n", number);
13 else
14 printf ("%d: not prime \n", number);
15 return 0;
16 }

6

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example. . .

$ gcc -ggdb3 simple .c -lm
$ gdb ./a.out
GNU gdb (GDB) 8.3.1
Copyright (C) 2019 Free Software Foundation , Inc.
... snip ...
For help , type "help".
Type " apropos word" to search for commands related to "word"...
Reading symbols from ./a.out ...
(gdb)

7

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Start Command

start starts program execution and stops it at the beginning of main

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18) at simple .c:16
16 main(int argc , char ** argv) {
(gdb)

8

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Step Command

step executes the next line. If there’s a function, it will step into it.

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18) at simple .c:16
16 main(int argc , char ** argv) {
(gdb) step
18 scanf ("%d", & number);
(gdb)

9

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Next Command
next executes the next line. If there’s a function, DO NOT step into it.

(gdb) start
Temporary breakpoint 1 at 0 x11c7 : file simple .c, line 16.
Starting program : /home/dcm/misc/debugging -on - linux /code/gdb - examples /a.out

Temporary breakpoint 1, main (argc =1, argv =0 x7fffffffdf18) at simple .c:16
16 main(int argc , char ** argv) {
(gdb) step
18 scanf ("%d", & number);
(gdb) next
1234567
19 if (is_prime (number))
(gdb)

10

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Print Command

print prints the contents of variables. It also allows calling functions.

(gdb) step
18 scanf ("%d", & number);
(gdb) next
1234567
19 if (is_prime (number))
(gdb) print number
$1 = 1234567
(gdb) print is_prime (number)
$2 = false
(gdb)

11

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The List Command
list lists the 10 lines of source code surrounding the current one

(gdb) next
1234567
19 if (is_prime (number))
(gdb) list
14
15 int
16 main(int argc , char ** argv) {
17 int number ;
18 scanf ("%d", & number);
19 if (is_prime (number))
20 printf ("%d: prime \n", number);
21 else
22 printf ("%d: not prime \n", number);
23 return 0;
(gdb)

12

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Break Command
break adds a break point, which will stop program execution when reached

(gdb) list
14
15 int
16 main(int argc , char ** argv) {
17 int number ;
18 scanf ("%d", & number);
19 if (is_prime (number))
20 printf ("%d: prime \n", number);
21 else
22 printf ("%d: not prime \n", number);
23 return 0;
(gdb) break 22
Breakpoint 2 at 0 x555555555214 : file simple .c, line 22.
(gdb)

13

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Continue Command

continue continues program execution until either a breakpoint is hit or the
programs exits

(gdb) break 22
Breakpoint 2 at 0 x555555555214 : file simple .c, line 22.
(gdb) continue
Continuing .

Breakpoint 2, main (argc =1, argv =0 x7fffffffdf08) at simple .c:22
22 printf ("%d: not prime \n", number);
(gdb)

14

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

The Quit Command
quit quits GDB, terminating the program

(gdb) continue
Continuing .

Breakpoint 2, main (argc =1, argv =0 x7fffffffdf08) at simple .c:22
22 printf ("%d: not prime \n", number);
(gdb) quit
A debugging session is active .

Inferior 1 [process 7431] will be killed .

Quit anyway ? (y or n) y
$

15

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Text User Interface

GDB can also be run with a TUI: gdb -tui ./a.out

16

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Text User Interface

17

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Quick Warning

The following is slide code and output, therefore all source code and program
output is heavily shortend.

18

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Valgrind

I Collection of usefull debugging tools
I Memcheck
I Helgrind

I Works on any executable
I Doesn’t require recompilation
I Output gets more readable with debug symbols!

19

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

How to use Valgrind?

I (optionally) Recompile the program with debug symbols
I Choose a tool
I Run the program under valgrind: valgrind --tool=$TOOL ./a.out

20

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memcheck

I finds common memory errors
I Use after free
I Use of uninitialised values
I Memory leaks
I . . . and many more

I Usage: valgrind [--leak-check=full] ./a.out

21

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free

Use After Free Usage of a pointer after it has been free()’d

22

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *ip;
6 ip = malloc (sizeof (int));
7 free(ip);
8 *ip = 3;
9 return 0;

10 }

23

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free

==4474== Memcheck , a memory error detector
.. snip ..
==4474== Invalid write of size 4
==4474== at 0 x109176 : main (uaf.c:8)
==4474== Address 0 x4a86040 is 0 bytes inside a block of size 4 free ’d
==4474== at 0 x48399AB : free (vg_replace_malloc .c :540)
==4474== by 0 x109171 : main (uaf.c:7)
==4474== Block was alloc ’d at
==4474== at 0 x483877F : malloc (vg_replace_malloc .c :309)
==4474== by 0 x109161 : main (uaf.c:6)
==4474==
.. snip ..

24

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Uninitialized Values

Unitialized Values Use of a variable or memory before it has been initialized

25

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Uninitialized Values

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 int i;
6 if (i)
7 printf ("Hui\n");
8 else
9 printf ("Pfui\n");

10 return 0;
11 }

26

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Uninitialized Values

==7096== Memcheck , a memory error detector
.. snip ..
==7096== Conditional jump or move depends on uninitialised value (s)
==7096== at 0 x10914C : main (ui.c:6)
==7096==
Pfui
==7096==
.. snip ..

27

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leaks

Memory Leak A piece of memory is malloc()’d, but never free()’d

28

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leaks

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *p;
6 p = malloc (sizeof (int));
7 return 0;
8 }

29

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leaks
==7219== Memcheck , a memory error detector
.. snip ..
==7219== HEAP SUMMARY :
==7219== in use at exit : 4 bytes in 1 blocks
==7219== total heap usage : 1 allocs , 0 frees , 4 bytes allocated
==7219==
==7219== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==7219== at 0 x483877F : malloc (vg_replace_malloc .c :309)
==7219== by 0 x109151 : main (ms.c:6)
==7219==
==7219== LEAK SUMMARY :
==7219== definitely lost: 4 bytes in 1 blocks
==7219== indirectly lost: 0 bytes in 0 blocks
==7219== possibly lost: 0 bytes in 0 blocks
==7219== still reachable : 0 bytes in 0 blocks
==7219== suppressed : 0 bytes in 0 blocks
.. snip ..

30

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Helgrind

I finds common threading problems
I Potential lock order inversions
I Race conditions

I Has problems with lock-free data structures/algorithms
I Usage: valgrind --tool=helgrind ./a.out

31

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race Condition

Race Condition Several Threads try to modify the same variable at the same
time yielding unexpected results

32

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race Condition
1 # include < pthread .h>
2
3 volatile int inc;
4
5 void *
6 thread (void *arg __attribute__ ((unused))) {
7 for (int i = 0; i < 65536; i++)
8 inc ++;
9 return NULL;

10 }
11
12 int
13 main(int argc , char ** argv) {
14 pthread_t t1 , t2;
15 pthread_create (&t1 , NULL , thread , NULL);
16 pthread_create (&t2 , NULL , thread , NULL);
17 /* snip */
18 }

33

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race Condition
==7454== Helgrind , a thread error detector
.. snip ..
==7454== Possible data race during read of size 4 at 0 x10C03C by thread #3
==7454== Locks held: none
==7454== at 0 x10915A : thread (rc.c:8)
==7454== by 0 x483F876 : mythread_wrapper (hg_intercepts .c :389)
==7454== by 0 x48A84CE : start_thread (in /usr/lib/ libpthread -2.30. so)
==7454== by 0 x49C02D2 : clone (in /usr/lib/libc -2.30. so)
==7454==
==7454== This conflicts with a previous write of size 4 by thread #2
==7454== Locks held: none
==7454== at 0 x109163 : thread (rc.c:8)
==7454== by 0 x483F876 : mythread_wrapper (hg_intercepts .c :389)
==7454== by 0 x48A84CE : start_thread (in /usr/lib/ libpthread -2.30. so)
==7454== by 0 x49C02D2 : clone (in /usr/lib/libc -2.30. so)
==7454== Address 0 x10c03c is 0 bytes inside data symbol "inc"
.. snip ..

34

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Lock Order Inversion

Lock Order Inversion Two threads try to acquire two locks in opposite orders

35

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Lock Order Inversion
6 void *
7 thread1 (void *arg __attribute__ ((unused))) {
8 pthread_mutex_lock (& lock1);
9 pthread_mutex_lock (& lock2); // Lock -Order - Inversion between here ...

10 pthread_mutex_unlock (& lock2);
11 pthread_mutex_unlock (& lock1);
12 return NULL;
13 }
14
15 void *
16 thread2 (void *arg __attribute__ ((unused))) {
17 pthread_mutex_lock (& lock2);
18 pthread_mutex_lock (& lock1); // ... and here !
19 pthread_mutex_unlock (& lock1);
20 pthread_mutex_unlock (& lock2);
21 return NULL;
22 }

36

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Lock Order Inversion
==8617== Thread #3: lock order "0 x10C080 before 0 x10C0C0 " violated
==8617==
==8617== Observed (incorrect) order is: acquisition of lock at 0 x10C0C0
==8617== at 0 x483CC3F : mutex_lock_WRK (hg_intercepts .c :909)
==8617== by 0 x1091C3 : thread2 (loi.c:17)
.. snip ..
==8617== followed by a later acquisition of lock at 0 x10C080
==8617== at 0 x483CC3F : mutex_lock_WRK (hg_intercepts .c :909)
==8617== by 0 x1091CF : thread2 (loi.c:18)
.. snip ..
==8617== Required order was established by acquisition of lock at 0 x10C080
==8617== at 0 x483CC3F : mutex_lock_WRK (hg_intercepts .c :909)
==8617== by 0 x109180 : thread1 (loi.c:8)
.. snip ..
==8617== followed by a later acquisition of lock at 0 x10C0C0
==8617== at 0 x483CC3F : mutex_lock_WRK (hg_intercepts .c :909)
==8617== by 0 x10918C : thread1 (loi.c:9)

37

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Sanitizer

I Error checking compiled into binary
I Thread Sanitizer
I Address Sanitizer
I Undefined Behaviour Sanitizer

I needs recompilation!
I Largely covers the same things as valgrind
I Available for both GCC and LLVM

38

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

How to use Sanitizer?

I Recompile the program with the Sanitizer enabled
I Needs to be enabled everywhere
I Usage: gcc -ggdb3 -fsanitize=$SANITIZER

I run the resulting binary

39

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Sanitizer - Address

I Checks for all kinds of address violations
I Also includes leak detector
I Similiar to valgrind’s Memcheck

I Can detect some bugs memcheck can’t
I Can’t detect some bugs memcheck can
I Provides more information

I Usage gcc -fsanitize=address

40

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *ip;
6 ip = malloc (sizeof (int));
7 free(ip);
8 *ip = 3;
9 return 0;

10 }

41

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free
==4299== ERROR : AddressSanitizer : heap -use -after -free on address 0 x602000000010

at pc 0 x5630686c61d9 bp 0 x7ffda2c5a820 sp 0 x7ffda2c5a810
WRITE of size 4 at 0 x602000000010 thread T0

#0 0 x5630686c61d8 in main / home /dcm / misc / debugging -on - linux / code / bugtype /
uaf.c:8

0 x602000000010 is located 0 bytes inside of 4-byte region [0 x602000000010 ,0
x602000000014)

freed by thread T0 here:
#1 0 x5630686c61a1 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

uaf.c:7

previously allocated by thread T0 here:
#1 0 x5630686c6191 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

uaf.c:6

42

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Use After Free
SUMMARY : AddressSanitizer : heap -use -after -free /home/dcm/misc/debugging -on -

linux /code/ bugtype /uaf.c:8 in main
Shadow bytes around the buggy address :

0 x0c047fff7fb0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fc0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fd0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7fe0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0 x0c047fff7ff0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0 x0c047fff8000 : fa fa[fd]fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8010 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8020 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8030 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8040 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c047fff8050 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

43

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leak

1 # include < stdlib .h>
2
3 int
4 main(int argc , char ** argv) {
5 int *p;
6 p = malloc (sizeof (int));
7 return 0;
8 }

44

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Memory Leaks

===
==4545== ERROR : LeakSanitizer : detected memory leaks

Direct leak of 4 byte(s) in 1 object (s) allocated from:
#0 0 x7f9b5971faca in __interceptor_malloc / build / gcc/ src/ gcc/ libsanitizer /

asan / asan_malloc_linux .cc :144
#1 0 x55d960688171 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

ms.c:6
#2 0 x7f9b5946f152 in __libc_start_main (/ usr/ lib/ libc .so .6+0 x27152)

SUMMARY : AddressSanitizer : 4 byte(s) leaked in 1 allocation (s).

45

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Buffer Overflow

Buffer Overflow Reading or writing memory outside of an allocated buffer

46

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Buffer Overflow

1 int
2 main(int argc , char ** argv) {
3 int arr [10];
4 arr [11] = 1;
5 return 0;
6 }

47

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Buffer Overflow
==4464== ERROR : AddressSanitizer : stack -buffer - overflow on address 0

x7ffe66905e4c at pc 0 x564ce591325c bp 0 x7ffe66905dd0 sp 0 x7ffe66905dc0
WRITE of size 4 at 0 x7ffe66905e4c thread T0

#0 0 x564ce591325b in main / home /dcm / misc / debugging -on - linux / code / bugtype /
bo.c:5

#1 0 x7f0a22d6b152 in __libc_start_main (/ usr/ lib/ libc .so .6+0 x27152)
#2 0 x564ce59130ad in _start (/ home / dcm/ misc / debugging -on - linux / code /

bugtype /a. out +0 x10ad)

Address 0 x7ffe66905e4c is located in stack of thread T0 at offset 92 in frame
#0 0 x564ce5913188 in main / home /dcm / misc / debugging -on - linux / code / bugtype /

bo.c:3

This frame has 1 object (s):
[48 , 88) ’arr ’ (line 4) <== Memory access at offset 92 overflows this

variable

48

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Sanitizer - Thread

I Detects common threading problems
I Similiar to valgrind’s Helgrind
I Always run programs with TSAN_OPTIONS=second_deadlock_stack=1

I $ TSAN_OPTIONS=second_deadlock_stack=1 ./a.out

I Usage gcc -fsanitize=thread

49

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Lock Order Inversion
6 void *
7 thread1 (void *arg __attribute__ ((unused))) {
8 pthread_mutex_lock (& lock1);
9 pthread_mutex_lock (& lock2); // Lock -Order - Inversion between here ...

10 pthread_mutex_unlock (& lock2);
11 pthread_mutex_unlock (& lock1);
12 return NULL;
13 }
14
15 void *
16 thread2 (void *arg __attribute__ ((unused))) {
17 pthread_mutex_lock (& lock2);
18 pthread_mutex_lock (& lock1); // ... and here !
19 pthread_mutex_unlock (& lock1);
20 pthread_mutex_unlock (& lock2);
21 return NULL;
22 }

50

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Lock Order Inversion
WARNING : ThreadSanitizer : lock -order - inversion (potential deadlock) (pid =7033)

Cycle in lock order graph : M9 (0 x55fc4d1620a0) => M10 (0 x55fc4d1620e0) => M9

Mutex M10 acquired here while holding mutex M9 in thread T1:
#1 thread1 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c:9

Mutex M9 previously acquired by the same thread here:
#1 thread1 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c:8

Mutex M9 acquired here while holding mutex M10 in thread T2:
#1 thread2 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c :18

Mutex M10 previously acquired by the same thread here:
#1 thread2 / home / dcm / misc / debugging -on - linux / code / bugtype /loi .c :17

51

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race Condition
1 # include < pthread .h>
2
3 volatile int inc;
4
5 void *
6 thread (void *arg __attribute__ ((unused))) {
7 for (int i = 0; i < 65536; i++)
8 inc ++;
9 return NULL;

10 }
11
12 int
13 main(int argc , char ** argv) {
14 pthread_t t1 , t2;
15 pthread_create (&t1 , NULL , thread , NULL);
16 pthread_create (&t2 , NULL , thread , NULL);
17 /* snip */
18 }

52

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Race condition
WARNING : ThreadSanitizer : data race (pid =11607)

Read of size 4 at 0 x559e8e885074 by thread T2:
#0 thread / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c:8

Previous write of size 4 at 0 x559e8e885074 by thread T1:
#0 thread / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c:8

Location is global ’inc ’ of size 4 at 0 x559e8e885074 (a.out +0 x000000004074)

Thread T2 (tid =11610 , running) created by main thread at:
#1 main / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c :16

Thread T1 (tid =11609 , finished) created by main thread at:
#1 main / home /dcm / misc / debugging -on - linux / code / bugtype /rc.c :15

53

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Sanitizer - Undefined Behaviour

I Detects undefined behaviour in C
I Doesn’t cover undefined behaviour related to memory
I Usage gcc -fsanitize=undefined

54

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Undefined Bitshifts

Undefined Bitshift Bitshifts larger than the width of the integer type

55

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Undefined Bitshifts

1 int
2 main(int argc , char ** argv) {
3 int i = 32;
4 int j = 0 xCAFFEE ;
5 j = j << i;
6 return 0;
7 }

56

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Undefined Bitshifts

ud.c :5:9: runtime error : shift exponent 32 is too large for 32- bit type ’int ’

57

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Strace

I Shows all system calls made by a program
I Allows debugging of everything File related

I Which files are used by a program?
I Where does a program search for files?
I What does a program do with a file?

I Usage: strace ./a.out

58

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Some important Linux Systemcalls
System Call Function Return Value
openat Opens a file A filedescriptor for the file
close Close a file 0
read Reads from a file Number of bytes read
write Writes to a files Number of bytes written
mmap Maps a file into memory Pointer to memory
socket Creates a new socket A filedescriptor for the socket
clone Spawn new thread/process ID of the newly create Process/Thread
execve Load new Program 0
exit_group Exit N/A

59

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example. . .

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 printf (" Hello World !");
6 return 0;
7 }

60

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example. . .

$ strace ./a.out > /dev/null
execve ("./a.out", ["./a.out"], 0 x7ffee24755b0 /* 47 vars */) = 0
brk(NULL) = 0 x55fd00b9c000
--snip --
fstat (1, { st_mode = S_IFCHR |0666 , st_rdev = makedev (0x1 , 0x3), ...}) = 0
ioctl (1, TCGETS , 0 x7fff3fb75ac0) = -1 ENOTTY (Inappropriate ioctl for

device)
brk(NULL) = 0 x55fd00b9c000
brk (0 x55fd00bbd000) = 0 x55fd00bbd000
write (1, " Hello World !", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

61

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Filtering output

I strace allows for filtering output by syscall
I Syntax: strace -e $ARGUMENT

I ARGUMENT should be a comma seperated list of systemcalls
I if a syscall is prefixed by !, it means all systemcalls but it

62

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example. . .

$ strace -e write ./a.out
write (1, " Hello World !", 12 Hello World !) = 12
+++ exited with 0 +++

63

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Files associated with File descriptors

I Enabled by -y

I Will show the file associated with each file descriptor
I /dev/pts/* is standart output

64

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example

1 # include < stdio .h>
2
3 int
4 main(int argc , char ** argv) {
5 FILE *f = fopen ("/tmp/test", "w+");
6 fprintf (f, " Hello \n");
7 fclose (f);
8 printf ("Done !\n");
9 return 0;

10 }

65

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

An Example

$ strace -y -e openat ,write , close ./a.out >/dev/null
openat (AT_FDCWD , "/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3</ etc/ld.so.cache >
close (3 </ etc/ld.so.cache >) = 0
openat (AT_FDCWD , "/usr/lib/libc.so .6", O_RDONLY | O_CLOEXEC) = 3</ usr/lib/libc

-2.30. so >
close (3 </ usr/lib/libc -2.30. so >) = 0
openat (AT_FDCWD , "/tmp/test", O_RDWR | O_CREAT |O_TRUNC , 0666) = 3</ tmp/test >
write (3 </ tmp/test >, " Hello \n", 6) = 6
close (3 </ tmp/test >) = 0
write (1 </ dev/null >, "Done !\n", 6) = 6
+++ exited with 0 +++

66

GDB Valgrind Memcheck Helgrind Sanitizer Address Thread Undefined Behaviour Strace

Thank you for your attention!

Question?

67

	GDB
	Valgrind
	Memcheck
	Helgrind
	Sanitizer
	Address
	Thread
	Undefined Behaviour
	Strace

