graph.py 12.7 KB
Newer Older
matthmey's avatar
matthmey committed
1
import dask
2
from dask.core import get_dependencies, flatten
matthmey's avatar
matthmey committed
3
4
5
import numpy as np
import copy

6
7
8
9
10

class Node(object):
    def __init__(self):
        pass

matthmey's avatar
matthmey committed
11
    def configure(self, requests):
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        """ Before a task graph is executed each node is configured.
            The request is propagated from the end to the beginning 
            of the DAG and each nodes "configure" routine is called.
            The request can be updated to reflect additional requirements,
            The return value gets passed to predecessors.

            Essentially the following question must be answered:
            What do I need to fulfil the request of my successor?

            Here, you must not configure the internal parameters of the
            Node otherwise it would not be thread-safe. You can however
            introduce a new key 'requires_request' in the request being 
            returned. This request will then be passed as an argument
            to the __call__ function.

            Best practice is to configure the Node on initialization with
            runtime independent configurations and define all runtime
            dependant configurations here.
        
        Arguments:
            requests {List} -- List of requests (i.e. dictionaries).

        
        Returns:
            dict -- The (updated) request. If updated modifications
                    must be made on a copy of the input. The return value
                    must be a dictionary. 
                    If multiple requests are input to this function they 
                    must be merged.
                    If nothing needs to be requested an empty dictionary
                    can be return. This removes all dependencies of this
                    node from the task graph.

        """
matthmey's avatar
matthmey committed
46
47
        if not isinstance(requests, list):
            raise RuntimeError("Please provide a **list** of request")
48
        if len(requests) > 1:
matthmey's avatar
matthmey committed
49
50
51
52
53
            raise RuntimeError(
                "Default configuration function cannot handle "
                "multiple requests. Please provide a custom "
                "configuration implementation"
            )
54
55
56
        return requests

    @dask.delayed
matthmey's avatar
matthmey committed
57
    def __call__(self, x, request=None):
58
59
60
61
62
63
64
        raise NotImplementedError()

    def get_config(self):
        """ returns a dictionary of configurations to recreate the state
        """
        raise NotImplementedError()

matthmey's avatar
matthmey committed
65
66

class StuettNode(Node):  # TODO: define where this class should be (maybe not here)
matthmey's avatar
matthmey committed
67
68
69
70
71
72
73
    def __init__(self, **kwargs):
        self.config = locals().copy()
        while "kwargs" in self.config and self.config["kwargs"]:
            self.config.update(self.config["kwargs"])
        del self.config["kwargs"]
        del self.config["self"]

matthmey's avatar
matthmey committed
74
    def configure(self, requests):
75
76
77
78
79
80
81
82
83
84
85
86
        """ Default configure for stuett nodes
            Expects two keys per request (*start_time* and *tend*)
            If multiple requests are passed, they will be merged
            start_time = minimum of all requests' start_time
            end_time = maximum of all requests' end_time
        
        Arguments:
            request {list} -- List of requests

        Returns:
            dict -- Original request or merged requests 
        """
matthmey's avatar
matthmey committed
87
88
        if not isinstance(requests, list):
            raise RuntimeError("Please provide a list of request")
89
90
91
92

        # For time requests we just use the union of both time segments
        new_request = requests[0].copy()

matthmey's avatar
matthmey committed
93
        key_func = {"start_time": np.minimum, "end_time": np.maximum}
94
        for r in requests[1:]:
matthmey's avatar
matthmey committed
95
            for key in ["start_time", "end_time"]:
96
97
                if key in r:
                    if key in new_request:
matthmey's avatar
matthmey committed
98
                        new_request[key] = key_func[key](new_request[key], r[key])
99
                    else:
matthmey's avatar
matthmey committed
100
101
                        new_request[key] = r[key]

102
103
        return new_request

matthmey's avatar
matthmey committed
104
105

def configuration(delayed, request, keys=None, default_merge=None):
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """ Configures each node of the graph by propagating the request from outputs
        to inputs.
        Each node checks if it can fulfil the request and what it needs to fulfil the request.
        If a node requires additional configurations to fulfil the request it can set the
        'requires_request' flag in the returned request and this function will add the 
        return request as a a new input to the node's __call__(). See also Node.configure()
    
    Arguments:
        delayed {dask.delayed or list}  -- Delayed object or list of delayed objects
        request {dict or list}           -- request (dict), list of requests
        default_merge {callable}        -- request merge function 
    
    Keyword Arguments:
        keys {[type]} -- [description] (default: {None})
    
    Raises:
        RuntimeError: [description]
        RuntimeError: [description]
    
    Returns:
        dask.delayed or list -- Config-optimized delayed object or list of delayed objects
    """

matthmey's avatar
matthmey committed
129
    if not isinstance(delayed, list):
130
131
132
133
        collections = [delayed]

    # dsk = dask.base.collections_to_dsk(collections)
    dsk, dsk_keys = dask.base._extract_graph_and_keys(collections)
matthmey's avatar
matthmey committed
134
    dependencies, dependants = dask.core.get_deps(dsk)
135
136
137
138
139
140
141
142
143
144
145

    if keys is None:
        keys = dsk_keys

    if not isinstance(keys, (list, set)):
        keys = [keys]
    out_keys = []
    seen = set()

    work = list(set(flatten(keys)))

matthmey's avatar
matthmey committed
146
    if isinstance(request, list):
147
        if len(request) != len(work):
matthmey's avatar
matthmey committed
148
149
150
151
152
153
154
            raise RuntimeError(
                "When passing multiple request items "
                "The number of request items must be same "
                "as the number of keys"
            )

        requests = {work[i]: [request[i]] for i in range(len(request))}
155
    else:
matthmey's avatar
matthmey committed
156
        requests = {k: [request] for k in work}
157

matthmey's avatar
matthmey committed
158
    remove = {k: False for k in work}
159
160
161
162
163
164
165
166
167
168
169
170
171
    input_requests = {}
    while work:
        new_work = []
        out_keys += work
        deps = []
        for k in work:
            # if k not in requests:
            #     # there wasn't any request stored use initial config
            #     requests[k] = [config]

            # check if we have collected all dependencies so far
            # we will come back to this node another time
            # TODO: make a better check for the case when dependants[k] is a set, also: why is it a set in the first place..?
matthmey's avatar
matthmey committed
172
173
174
175
176
            if (
                k in dependants
                and len(dependants[k]) != len(requests[k])
                and not isinstance(dependants[k], set)
            ):
177
178
179
180
181
182
183
                # print(f'Waiting at {k}', dependants[k], requests[k])
                continue

            # print(f"configuring {k}",requests[k])
            # set configuration for this node k

            # If we create a delayed object from a class, `self` will be dsk[k][1]
matthmey's avatar
matthmey committed
184
185
186
            if isinstance(dsk[k], tuple) and isinstance(
                dsk[k][1], Node
            ):  # Check if we get a node of type Node class
187
188
                # current_requests = [r for r in requests[k] if r]                    # get all requests belonging to this node
                current_requests = requests[k]
matthmey's avatar
matthmey committed
189
190
191
192
193
194
                new_request = dsk[k][1].configure(
                    current_requests
                )  # Call the class configuration function
                if not isinstance(
                    new_request, list
                ):  # prepare the request return value
195
                    new_request = [new_request]
matthmey's avatar
matthmey committed
196
197
            else:  # We didn't get a Node class so there is no
                # custom configuration function: pass through
198
199
200
201
                if len(requests[k]) > 1:
                    if callable(default_merge):
                        new_request = default_merge(requests[k])
                    else:
matthmey's avatar
matthmey committed
202
203
204
205
206
                        raise RuntimeError(
                            "No valid default merger supplied. Cannot merge requests. "
                            "Either convert your function to a class Node or provide "
                            "a default merger"
                        )
207
208
                else:
                    new_request = requests[k]
matthmey's avatar
matthmey committed
209
210
211
212
213
214
215
216
217

            if (
                "requires_request" in new_request[0]
                and new_request[0]["requires_request"] == True
            ):
                del new_request[0]["requires_request"]
                input_requests[k] = copy.deepcopy(
                    new_request[0]
                )  # TODO: check if we need a deepcopy here!
218
219
220
221
222
223
224
225
226

            # update dependencies
            current_deps = get_dependencies(dsk, k, as_list=True)
            for i, d in enumerate(current_deps):
                if d in requests:
                    requests[d] += new_request
                    remove[d] = remove[d] and (not new_request[0])
                else:
                    requests[d] = new_request
matthmey's avatar
matthmey committed
227
228
229
                    remove[d] = not new_request[
                        0
                    ]  # if we received an empty dictionary flag deps for removal
230
231

                # only configure each node once in a round!
matthmey's avatar
matthmey committed
232
233
234
235
236
                if d not in new_work and d not in work:  # TODO: verify this
                    new_work.append(
                        d
                    )  # TODO: Do we need to configure dependency if we'll remove it?

237
238
239
240
241
242
243
244
245
246
        work = new_work

    # Assembling the configured new graph
    out = {k: dsk[k] for k in out_keys if not remove[k]}
    # After we have aquired all requests we can input the required_requests as a input node to the requiring node
    for k in input_requests:
        out[k] += (input_requests[k],)

    # convert to delayed object
    from dask.delayed import Delayed
matthmey's avatar
matthmey committed
247

248
    in_keys = list(flatten(keys))
matthmey's avatar
matthmey committed
249
    # print(in_keys)
250
    if len(in_keys) > 1:
matthmey's avatar
matthmey committed
251
        collection = [Delayed(key=key, dsk=out) for key in in_keys]
252
    else:
matthmey's avatar
matthmey committed
253
254
        collection = Delayed(key=in_keys[0], dsk=out)
        if isinstance(collection, list):
255
256
257
258
259
260
            collection = [collection]

    return collection


class Freezer(Node):
matthmey's avatar
matthmey committed
261
    def __init__(self, caching=True):
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        self.caching = caching

    @dask.delayed
    def __call__(self, x):
        """If caching is enabled load a cached result or stores the input data and returns it
        
        Arguments:
            x {xarray or dict} -- Either the xarray data to be passed through (and cached)
                                  or request dictionary containing information about the data
                                  to be loaded
        
        Returns:
            xarray -- Data loaded from cache or input data passed through
        """
matthmey's avatar
matthmey committed
276
277

        if isinstance(x, dict):
278
279
280
281
            if self.is_cached(x) and self.caching:
                # TODO: load from cache and return it
                pass
            elif not self.caching:
matthmey's avatar
matthmey committed
282
                raise RuntimeError(f"If caching is disabled cannot perform request {x}")
283
            else:
matthmey's avatar
matthmey committed
284
285
286
287
                raise RuntimeError(
                    f"Result is not cached but cached result is requested with {x}"
                )

288
        if self.caching:
matthmey's avatar
matthmey committed
289
290
            # TODO: store the input data
            pass
291
292
293

        return x

matthmey's avatar
matthmey committed
294
    def configure(self, requests):
295
296
297
298
299
        if self.caching:
            return [{}]
        return config_conflict(requests)


matthmey's avatar
matthmey committed
300
def optimize_freeze(dsk, keys, request_key="request"):
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    """ Return new dask with tasks removed which are unnecessary because a later stage 
    reads from cache
    ``keys`` may be a single key or list of keys.
    Examples
    --------

    Returns
    -------
    dsk: culled dask graph
    dependencies: Dict mapping {key: [deps]}.  Useful side effect to accelerate
        other optimizations, notably fuse.
    """
    if not isinstance(keys, (list, set)):
        keys = [keys]
    out_keys = []
    seen = set()
    dependencies = dict()

matthmey's avatar
matthmey committed
319
320
321
322
323
    if request_key not in dsk:
        raise RuntimeError(
            f"Please provide a task graph which includes '{request_key}'"
        )

324
325
    request = dsk[request_key]

matthmey's avatar
matthmey committed
326
327
328
    def is_cached(task, request):
        if isinstance(task, tuple):
            if isinstance(task[0], Freezer):
329
                return task[0].is_cached(request)
matthmey's avatar
matthmey committed
330
        return False
331
332
333
334
335
336
337
338

    work = list(set(flatten(keys)))
    cached_keys = []
    while work:
        new_work = []
        out_keys += work
        deps = []
        for k in work:
matthmey's avatar
matthmey committed
339
            if is_cached(dsk[k], request):
340
341
342
                cached_keys.append(k)
            else:
                deps.append((k, get_dependencies(dsk, k, as_list=True)))
matthmey's avatar
matthmey committed
343

344
345
346
347
348
349
350
351
352
353
354
        dependencies.update(deps)
        for _, deplist in deps:
            for d in deplist:
                if d not in seen:
                    seen.add(d)
                    new_work.append(d)
        work = new_work

    out = {k: dsk[k] for k in out_keys}

    # finally we need to replace the input of the caching nodes with the request
matthmey's avatar
matthmey committed
355
    cached = {k: (out[k][0], request_key) for k in cached_keys}
356
357
358
    out.update(cached)

    return out, dependencies