management.py 44.1 KB
Newer Older
matthmey's avatar
matthmey committed
1
from ..global_config import get_setting, setting_exists, set_setting
2
3
from ..core.graph import StuettNode

matthmey's avatar
matthmey committed
4
import os
5
6
7
8
9
10
11

import dask
import logging
import obspy
from obspy.clients.fdsn import Client
from obspy import UTCDateTime
from obsplus import obspy_to_array
matthmey's avatar
matthmey committed
12
from copy import deepcopy
13

matthmey's avatar
matthmey committed
14
15
16
17
import zarr
import xarray as xr
from PIL import Image
import base64
matthmey's avatar
matthmey committed
18
import re
19

matthmey's avatar
matthmey committed
20
21
22
23
from pathlib import Path
import warnings

# TODO: revisit the following packages
24
25
import numpy as np
import pandas as pd
matthmey's avatar
matthmey committed
26
import datetime as dt
27
from pathlib import Path
matthmey's avatar
matthmey committed
28

29
30

class DataSource(StuettNode):
matthmey's avatar
matthmey committed
31
32
    def __init__(self, **kwargs):
        super().__init__(kwargs=kwargs)
33
34

    def __call__(self, data=None, request=None, delayed=False):
matthmey's avatar
matthmey committed
35
        print(data,request)
36
37
38
39
40
41
42
43
44
        if data is not None:
            if request is None:
                request = data
            else:
                warnings.warning(
                    "Two inputs (data, request) provided to the DataSource but it can only handle a request. Choosing request. "
                )

        # DataSource only require a request
matthmey's avatar
matthmey committed
45
        # Therefore merge permanent-config and request
46
47
48
49
        config = self.config.copy()  # TODO: do we need a deep copy?
        if request is not None:
            config.update(request)

matthmey's avatar
matthmey committed
50
51
52
53
54
55
56
57
58
59
        # TODO: change when rewriting for general indices
        if 'start_time' in config and config['start_time'] is not None:
            config['start_time'] = pd.to_datetime(config['start_time'], utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed
        if 'end_time' in config and config['end_time'] is not None:
            config['end_time'] = pd.to_datetime(config['end_time'], utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed    
        
60
        if delayed:
matthmey's avatar
matthmey committed
61
            return dask.delayed(self.forward)(None,config)
62
        else:
matthmey's avatar
matthmey committed
63
            return self.forward(None,config)
64

matthmey's avatar
matthmey committed
65
    def configure(self, requests=None):
66
67
68
69
70
71
72
73
74
75
        """ Default configure for DataSource nodes
            Same as configure from StuettNode but adds is_source flag

        Arguments:
            request {list} -- List of requests

        Returns:
            dict -- Original request or merged requests 
        """
        requests = super().configure(requests)
matthmey's avatar
matthmey committed
76
        requests["requires_request"] = True
77
78
79

        return requests

80
81
82
83
84
85
class GSNDataSource(DataSource):
    def __init__(
        self, deployment=None, vsensor=None, position=None, start_time=None, end_time=None, **kwargs
    ):
        super().__init__(deployment=deployment, position=position, vsensor=vsensor, start_time=start_time, end_time=end_time, kwargs=kwargs)

matthmey's avatar
matthmey committed
86
    def forward(self, data=None, request=None):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        #### 1 - DEFINE VSENSOR-DEPENDENT COLUMNS ####
        colnames = pd.read_csv(
            Path(get_setting("metadata_directory")).joinpath("vsensor_metadata/{:s}_{:s}.csv".format(
                request["deployment"], request["vsensor"])
            ),
            skiprows=0,
        )
        columns_old = colnames["colname_old"].values
        columns_new = colnames["colname_new"].values
        columns_unit = colnames["unit"].values
        if len(columns_old) != len(columns_new):
            warnings.warn(
                "WARNING: Length of 'columns_old' ({:d}) is not equal length of  'columns_new' ({:d})".format(
                    len(columns_old), len(columns_new)
                )
            )
        if len(columns_old) != len(columns_unit):
            warnings.warn(
                "WARNING: Length of 'columns_old' ({:d}) is not equal length of  'columns_new' ({:d})".format(
                    len(columns_old), len(columns_unit)
                )
            )

        unit = dict(zip(columns_new, columns_unit))
        #### 2 - DEFINE CONDITIONS AND CREATE HTTP QUERY ####

        # Set server
        server = get_setting("permasense_server")

        # Create virtual_sensor
        virtual_sensor = request["deployment"] + "_" + request["vsensor"]

        # Create query and add time as well as position selection
        query = (
            "vs[1]={:s}"
            "&time_format=iso"
            "&timeline=generation_time"
            "&field[1]=All"
            "&from={:s}"
            "&to={:s}"
            "&c_vs[1]={:s}"
            "&c_join[1]=and"
            "&c_field[1]=position"
            "&c_min[1]={:02d}"
            "&c_max[1]={:02d}"
        ).format(
            virtual_sensor,
            pd.to_datetime(request['start_time'],utc=True).strftime("%d/%m/%Y+%H:%M:%S"),
            pd.to_datetime(request['end_time'],utc=True).strftime("%d/%m/%Y+%H:%M:%S"),
            virtual_sensor,
            int(request["position"]) - 1,
            request["position"],
        )

        # query extension for images
        if request["vsensor"] == "binary__mapped":
            query = (
                query
                + "&vs[2]={:s}&field[2]=relative_file&c_join[2]=and&c_vs[2]={:s}&c_field[2]=file_complete&c_min[2]=0&c_max[2]=1&vs[3]={:s}&field[3]=generation_time&c_join[3]=and&c_vs[3]={:s}&c_field[3]=file_size&c_min[3]=2000000&c_max[3]=%2Binf&download_format=csv".format(
                    virtual_sensor, virtual_sensor, virtual_sensor, virtual_sensor
                )
            )

        # Construct url:
        url = server + "multidata?" + query
        # if self.verbose:
        #     print('The GSN http-query is:\n{:s}'.format(url))

        #### 3 - ACCESS DATA AND CREATE PANDAS DATAFRAME ####
        d = []
        d = pd.read_csv(
            url, skiprows=2
        )  # skip header lines (first 2) for import: skiprows=2
        df = pd.DataFrame(columns=columns_new)
        df.time = pd.to_datetime(d.generation_time,utc=True)

 
        # if depo in ['mh25', 'mh27old', 'mh27new', 'mh30', 'jj22', 'jj25', 'mh-nodehealth']:
        # d = d.convert_objects(convert_numeric=True)  # TODO: rewrite to remove warning
        for k in list(df):
            df[k]=pd.to_numeric(df[k], errors='ignore')

        #        df = pd.DataFrame(columns=columns_new)
        #        df.time = timestamp2datetime(d['generation_time']/1000)
        for i in range(len(columns_old)):
            if columns_new[i] != "time":
                setattr(df, columns_new[i], getattr(d, columns_old[i]))

        df = df.sort_values(by="time")

        # Remove columns with names 'delete'
        try:
            df.drop(["delete"], axis=1, inplace=True)
        except:
            pass

        # Remove columns with only 'null'
        df = df.replace(r"null", np.nan, regex=True)
        isnull = df.isnull().all()
        [df.drop([col_name], axis=1, inplace=True) for col_name in df.columns[isnull]]

        df = df.set_index("time")
        df = df.sort_index(axis=1)
        
        x = xr.DataArray(df, dims=["time", "name"], name="CSV")

        try:
            unit_coords = []
            for name in x.coords["name"].values:
                # name = re.sub(r"\[.*\]", "", name).lstrip().rstrip()
                u = unit[str(name)]
                u = re.findall(r"\[(.*)\]", u)[0]

                # name_coords.append(name)
                unit_coords.append(u)

            x = x.assign_coords({"unit": ("name", unit_coords)})
        except:
            # TODO: add a warning or test explicitly if units exist
            pass

        return x

210
211

class SeismicSource(DataSource):
matthmey's avatar
matthmey committed
212
213
    def __init__(
        self,
214
        path=None,
matthmey's avatar
matthmey committed
215
216
217
218
219
220
221
222
        station=None,
        channel=None,
        start_time=None,
        end_time=None,
        use_arclink=False,
        return_obspy=False,
        **kwargs,
    ):  # TODO: update description
223
224
225
226
        """ Seismic data source to get data from permasense
            The user can predefine the source's settings or provide them in a request
            Predefined setting should never be updated (to stay thread safe), but will be ignored
            if request contains settings
matthmey's avatar
matthmey committed
227
228
229
230
231

        Keyword Arguments:
            config {dict}       -- Configuration for the seismic source (default: {{}})
            use_arclink {bool}  -- If true, downloads the data from the arclink service (authentication required) (default: {False})
            return_obspy {bool} -- By default an xarray is returned. If true, an obspy stream will be returned (default: {False})
232
        """
matthmey's avatar
matthmey committed
233
        super().__init__(
234
            path=path,
matthmey's avatar
matthmey committed
235
236
237
238
239
240
241
242
            station=station,
            channel=channel,
            start_time=start_time,
            end_time=end_time,
            use_arclink=use_arclink,
            return_obspy=return_obspy,
            kwargs=kwargs,
        )
243

matthmey's avatar
matthmey committed
244
    def forward(self, data=None, request=None):
245
        config = request
246

matthmey's avatar
matthmey committed
247
        if config["use_arclink"]:
248
249
250
251
252
253
254
255
            try:
                arclink = get_setting("arclink")
            except KeyError as err:
                raise RuntimeError(
                    f"The following error occured \n{err}. "
                    "Please provide either the credentials to access arclink or a path to the dataset"
                )

matthmey's avatar
matthmey committed
256
257
            arclink_user = arclink["user"]
            arclink_password = arclink["password"]
matthmey's avatar
matthmey committed
258
            fdsn_client = Client(
matthmey's avatar
matthmey committed
259
260
261
262
                base_url="http://arclink.ethz.ch",
                user=arclink_user,
                password=arclink_password,
            )
matthmey's avatar
matthmey committed
263
            x = fdsn_client.get_waveforms(
matthmey's avatar
matthmey committed
264
265
266
267
268
269
270
271
                network="4D",
                station=config["station"],
                location="A",
                channel=config["channel"],
                starttime=UTCDateTime(config["start_time"]),
                endtime=UTCDateTime(config["end_time"]),
                attach_response=True,
            )
272

matthmey's avatar
matthmey committed
273
            # TODO: potentially resample
matthmey's avatar
matthmey committed
274

matthmey's avatar
matthmey committed
275
        else:  # 20180914 is last full day available in permasense_vault
276
            # logging.info('Loading seismic with fdsn')
matthmey's avatar
matthmey committed
277
            x = self.get_obspy_stream(
278
                config["path"],
matthmey's avatar
matthmey committed
279
280
281
282
283
284
                config["start_time"],
                config["end_time"],
                config["station"],
                config["channel"],
            )

285
286
287
288
289
        x = x.slice(UTCDateTime(config["start_time"]), UTCDateTime(config["end_time"]))

        # TODO: remove response x.remove_response(output=vel)
        # x = self.process_seismic_data(x)

matthmey's avatar
matthmey committed
290
        if not config["return_obspy"]:
matthmey's avatar
matthmey committed
291
292
            x = obspy_to_array(x)

293
            # we assume that all starttimes are equal
matthmey's avatar
matthmey committed
294
295
            starttime = x.starttime.values.reshape((-1,))[0]
            for s in x.starttime.values.reshape((-1,)):
296
297
298
299
300
                if s != starttime:
                    raise RuntimeError(
                        "Please make sure that starttime of each seimsic channel is equal"
                    )

matthmey's avatar
matthmey committed
301
            # change time coords from relative to absolute time
302
            starttime = obspy.UTCDateTime(starttime).datetime
matthmey's avatar
matthmey committed
303
304
305
            starttime = pd.to_datetime(starttime, utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed
matthmey's avatar
matthmey committed
306
307
            timedeltas = pd.to_timedelta(x["time"].values, unit="seconds")
            xt = starttime + timedeltas
matthmey's avatar
matthmey committed
308
309
310
            x["time"] = pd.to_datetime(xt, utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed
matthmey's avatar
matthmey committed
311
            del x.attrs["stats"]
312
313
314

        return x

315
316
317
318
319
320
321
322
    def process_seismic_data(
        self,
        stream,
        remove_response=True,
        unit="VEL",
        station_inventory=None,
        detrend=True,
        taper=False,
matthmey's avatar
matthmey committed
323
        pre_filt=(0.025, 0.05, 45.0, 49.0),
324
325
326
        water_level=60,
        apply_filter=True,
        freqmin=0.002,
matthmey's avatar
matthmey committed
327
        freqmax=50,
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        resample=False,
        resample_rate=250,
        rotation_angle=None,
    ):
        # author: Samuel Weber
        if station_inventory is None:
            station_inventory = Path(get_setting("metadata_directory")).joinpath(
                "inventory_stations__MH.xml"
            )

        print(station_inventory)
        inv = obspy.read_inventory(str(station_inventory))
        # st = stream.copy()
        st = stream
        st.attach_response(inv)

        if taper:
            st.detrend("demean")
            st.detrend("linear")

        if taper:
            st.taper(max_percentage=0.05)

        if remove_response:
            if hasattr(st[0].stats, "response"):
                st.remove_response(
                    output=unit,
                    pre_filt=pre_filt,
                    plot=False,
                    zero_mean=False,
                    taper=False,
                    water_level=water_level,
                )
            else:
                st.remove_response(
                    output=unit,
                    inventory=inv,
                    pre_filt=pre_filt,
                    plot=False,
                    zero_mean=False,
                    taper=False,
                    water_level=water_level,
                )

        if taper:
            st.detrend("demean")
            st.detrend("linear")

        if taper:
            st.taper(max_percentage=0.05)

        if apply_filter:
            st.filter("bandpass", freqmin=freqmin, freqmax=freqmax)

        if resample:
            st.resample(resample_rate)

        if rotation_angle is None:
            rotation_angle = np.nan
        if not np.isnan(rotation_angle):
            st.rotate("NE->RT", back_azimuth=int(rotation_angle), inventory=inv)

        return st

matthmey's avatar
matthmey committed
392
393
    def get_obspy_stream(
        self,
394
        path,
matthmey's avatar
matthmey committed
395
396
397
398
399
400
401
402
        start_time,
        end_time,
        station,
        channels,
        pad=False,
        verbose=False,
        fill=0,
        fill_sampling_rate=1000,
403
        old_stationname=False,
matthmey's avatar
matthmey committed
404
    ):
405
406
407
408
        """    
        Loads the microseismic data for the given timeframe into a miniseed file.

        Arguments:
matthmey's avatar
matthmey committed
409
410
            start_time {datetime} -- start timestamp of the desired obspy stream
            end_time {datetime} -- end timestamp of the desired obspy stream
411
412
413
414
415
416
417
418
419
420
421
        
        Keyword Arguments:
            pad {bool} -- If padding is true, the data will be zero padded if the data is not consistent
            fill {} -- If numpy.nan or fill value: error in the seismic stream will be filled with the value. If None no fill will be used
            verbose {bool} -- If info should be printed

        Returns:
            obspy stream -- obspy stream with up to three channels
                            the stream's channels will be sorted alphabetically
        """

matthmey's avatar
matthmey committed
422
        if not isinstance(channels, list):
423
            channels = [channels]
424
        datadir = Path(path)
425
426
427

        if not os.path.isdir(datadir):
            # TODO: should this be an error or only a warning. In a period execution this could stop the whole script
matthmey's avatar
matthmey committed
428
            raise IOError(
429
                "Cannot find the path {}. Please provide a correct path to the permasense geophone directory".format(
matthmey's avatar
matthmey committed
430
431
432
                    datadir
                )
            )
433
434

        # We will get the full hours seismic data and trim it to the desired length afterwards
matthmey's avatar
matthmey committed
435
436
437
438
        tbeg_hours = pd.to_datetime(start_time).replace(
            minute=0, second=0, microsecond=0
        )
        timerange = pd.date_range(start=tbeg_hours, end=end_time, freq="H")
439

matthmey's avatar
matthmey committed
440
        non_existing_files_ts = []  # keep track of nonexisting files
441
442
443
444
445
446
447
448
449
450

        # drawback of memmap files is that we need to calculate the size beforehand
        stream = obspy.Stream()

        idx = 0
        ## loop through all hours
        for i in range(len(timerange)):
            # start = time.time()
            h = timerange[i]

matthmey's avatar
matthmey committed
451
            st_list = obspy.Stream()
452

matthmey's avatar
matthmey committed
453
            datayear = timerange[i].strftime("%Y/")
454
455
456
457
            if old_stationname:
                station = (
                    "MHDL" if station == "MH36" else "MHDT"
                )  # TODO: do not hardcode it
458
459
            filenames = {}
            for channel in channels:
460
461
462
463
464
                filenames[channel] = datadir.joinpath(
                    station,
                    datayear,
                    "%s.D/" % channel,
                    "4D.%s.A.%s.D." % (station, channel)
matthmey's avatar
matthmey committed
465
                    + timerange[i].strftime("%Y%m%d_%H%M%S")
466
                    + ".miniseed",
matthmey's avatar
matthmey committed
467
468
469
                )
                # print(filenames[channel])
                if not os.path.isfile(filenames[channel]):
470
471
                    non_existing_files_ts.append(timerange[i])

matthmey's avatar
matthmey committed
472
473
474
475
476
477
478
                    warnings.warn(
                        RuntimeWarning(
                            "Warning file not found for {} {}".format(
                                timerange[i], filenames[channel]
                            )
                        )
                    )
479
480
481

                    if fill is not None:
                        # create empty stream of fill value
matthmey's avatar
matthmey committed
482
483
484
485
486
487
488
489
490
491
492
493
494
                        arr = (
                            np.ones(
                                (
                                    int(
                                        np.ceil(
                                            fill_sampling_rate
                                            * dt.timedelta(hours=1).total_seconds()
                                        )
                                    ),
                                )
                            )
                            * fill
                        )
495
496
497
498
                        st = obspy.Stream([obspy.Trace(arr)])
                    else:
                        continue
                else:
499
                    st = obspy.read(str(filenames[channel]))
500
501
502

                st_list += st

matthmey's avatar
matthmey committed
503
504
505
506
507
508
509
510
511
512
513
            stream_h = st_list.merge(method=0, fill_value=fill)
            start_time_0 = start_time if i == 0 else h
            end_time_0 = (
                end_time if i == len(timerange) - 1 else h + dt.timedelta(hours=1)
            )
            segment_h = stream_h.trim(
                obspy.UTCDateTime(start_time_0),
                obspy.UTCDateTime(end_time_0),
                pad=pad,
                fill_value=fill,
            )
514
515
516
517
            stream += segment_h

        stream = stream.merge(method=0, fill_value=fill)

matthmey's avatar
matthmey committed
518
519
520
        stream.sort(
            keys=["channel"]
        )  # TODO: change this so that the order of the input channels list is maintained
521
522
523
524

        return stream


525
class MHDSLRFilenames(DataSource):
matthmey's avatar
matthmey committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def __init__(
        self, base_directory=None, method="directory", start_time=None, end_time=None
    ):
        """ Fetches the DSLR images from the Matterhorn deployment, returns the image
            filename(s) corresponding to the end and start time provided in either the
            config dict or as a request to the __call__() function.          
        
        Arguments:
            StuettNode {[type]} -- [description]

        Keyword Arguments:
            base_directory {[type]} -- [description]
            method {str}     -- [description] (default: {'directory'})
        """
matthmey's avatar
matthmey committed
540
541
542
543
544
545
        super().__init__(
            base_directory=base_directory,
            method=method,
            start_time=start_time,
            end_time=end_time,
        )
546

matthmey's avatar
matthmey committed
547
    def forward(self, data=None, request=None):
matthmey's avatar
matthmey committed
548
549
550
551
        """Retrieves the images for the selected time period from the server. If only a start_time timestamp is provided, 
          the file with the corresponding date will be loaded if available. For periods (when start and end time are given) 
          all available images are indexed first to provide an efficient retrieval.
        
552
        Arguments:
matthmey's avatar
matthmey committed
553
554
555
556
557
558
559
            start_time {datetime} -- If only start_time is given the neareast available image is return. If also end_time is provided the a dataframe is returned containing image filenames from the first image after start_time until the last image before end_time.
        
        Keyword Arguments:
            end_time {datetime} -- end time of the selected period. see start_time for a description. (default: {None})
        
        Returns:
            dataframe -- Returns containing the image filenames of the selected period.
560
        """
561
        config = request
matthmey's avatar
matthmey committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        methods = ["directory", "web"]
        if config["method"].lower() not in methods:
            raise RuntimeError(
                f"The {config['method']} output_format is not supported. Allowed formats are {methods}"
            )

        if config["base_directory"] is None and output_format.lower() != "web":
            raise RuntimeError("Please provide a base_directory containing the images")

        if config["method"].lower() == "web":  # TODO: implement
            raise NotImplementedError("web fetch has not been implemented yet")

        start_time = config["start_time"]
        end_time = config["end_time"]

        if start_time is None:
            raise RuntimeError("Please provide a least start time")

        # if it is not timezone aware make it
        # if start_time.tzinfo is None:
        #     start_time = start_time.replace(tzinfo=timezone.utc)

        # If there is no tmp_dir we can try to load the file directly, otherwise
        # there will be a warning later in this function and the user should
        # set a tmp_dir
        if end_time is None and (
            not setting_exists("user_dir") or not os.path.isdir(get_setting("user_dir"))
        ):
            image_filename = self.get_image_filename(start_time)
            if image_filename is not None:
                return image_filename

        # If we have already loaded the dataframe in the current session we can use it
        if setting_exists("image_list_df"):
            imglist_df = get_setting("image_list_df")
        else:
            if setting_exists("user_dir") and os.path.isdir(get_setting("user_dir")):
                # Otherwise we need to load the filename dataframe from disk
                imglist_filename = (
                    os.path.join(get_setting("user_dir"), "")
                    + "full_image_integrity.parquet"
                )

                # If it does not exist in the temporary folder of our application
                # We are going to create it
                if os.path.isfile(imglist_filename):
                    imglist_df = pd.read_parquet(
                        imglist_filename
                    )  # TODO: avoid too many different formats
                else:
                    # we are going to load the full list => no arguments
                    imglist_df = self.image_integrity(config["base_directory"])
                    imglist_df.to_parquet(imglist_filename)
            else:
                # if there is no tmp_dir we can load the image list but
                # we should warn the user that this is inefficient
                imglist_df = self.image_integrity(config["base_directory"])
                warnings.warn(
                    "No temporary directory was set. You can speed up multiple runs of your application by setting a temporary directory"
                )

            # TODO: make the index timezone aware
            imglist_df.set_index("start_time", inplace=True)
            imglist_df.index = pd.to_datetime(imglist_df.index, utc=True)
            imglist_df.sort_index(inplace=True)

            set_setting("image_list_df", imglist_df)

        if end_time is None:
            if start_time < imglist_df.index[0]:
                start_time = imglist_df.index[0]
633

matthmey's avatar
matthmey committed
634
635
636
637
638
639
            return imglist_df.iloc[
                imglist_df.index.get_loc(start_time, method="nearest")
            ]
        else:
            # if end_time.tzinfo is None:
            #     end_time = end_time.replace(tzinfo=timezone.utc)
640
641
642
643
            print(imglist_df)
            if start_time > imglist_df.index[-1] or end_time < imglist_df.index[0]:
                # return empty dataframe
                return imglist_df[0:0]
matthmey's avatar
matthmey committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

            if start_time < imglist_df.index[0]:
                start_time = imglist_df.index[0]
            if end_time > imglist_df.index[-1]:
                end_time = imglist_df.index[-1]

            return imglist_df.iloc[
                imglist_df.index.get_loc(
                    start_time, method="bfill"
                ) : imglist_df.index.get_loc(end_time, method="ffill")
                + 1
            ]

    def image_integrity(
        self, base_directory, start_time=None, end_time=None, delta_seconds=0
    ):
        """ Checks which images are available on the permasense server
        
        Keyword Arguments:
            start_time {[type]} -- datetime object giving the lower bound of the time range which should be checked. 
                                   If None there is no lower bound. (default: {None})
            end_time {[type]} --   datetime object giving the upper bound of the time range which should be checked.
                                   If None there is no upper bound (default: {None})
            delta_seconds {int} -- Determines the 'duration' of an image in the output dataframe.
                                   start_time  = image_time+delta_seconds
                                   end_time    = image_time-delta_seconds (default: {0})
        
        Returns:
            DataFrame -- Returns a pandas dataframe with a list containing filename relative to self.base_directory, 
                         start_time and end_time start_time and end_time can vary depending on the delta_seconds parameter
        """
        """ Checks which images are available on the permasense server
676

matthmey's avatar
matthmey committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        Arguments:
            start_time:   
            end_time:   
            delta_seconds:  Determines the 'duration' of an image in the output dataframe.
                            start_time  = image_time+delta_seconds
                            end_time    = image_time-delta_seconds
        Returns:
            DataFrame -- 
        """
        if start_time is None:
            start_time = dt.datetime(
                1900, 1, 1
            )  # add random year which is before permasense installation started
        if end_time is None:
            end_time = dt.datetime.utcnow()

        tbeg_days = start_time.replace(hour=0, minute=0, second=0)
        tend_days = end_time.replace(hour=23, minute=59, second=59)

        delta_t = dt.timedelta(seconds=delta_seconds)
        num_filename_errors = 0
        images_list = []
        p = Path(base_directory)

        if not p.is_dir():
            warnings.warn(
                "Could not find the permasense image dataset. Please make sure it is available at {}".format(
                    str(p)
                )
            )

        for dir in p.glob("*/"):
            dir_date = dt.datetime.strptime(str(dir.name), "%Y-%m-%d")

            # limit the search to the explicit time range
            if dir_date < tbeg_days or dir_date > tend_days:
                continue

            for img_file in dir.glob("*"):
                # print(file.stem)
                start_time_str = img_file.stem

                try:
                    # start_time = datetime.strptime(start_time_str[:15], '%Y%m%d_%H%M%S')
                    start_time = dt.datetime.strptime(start_time_str, "%Y%m%d_%H%M%S")
                    if start_time <= start_time and start_time <= end_time:
                        images_list.append(
                            {
                                "filename": str(img_file.relative_to(base_directory)),
                                "start_time": start_time - delta_t,
                                "end_time": start_time + delta_t,
                            }
                        )
                except ValueError:
                    # try old naming convention
                    try:
                        # start_time = datetime.strptime(start_time_str[:17], '%Y-%m-%d_%H%M%S')
                        start_time = dt.datetime.strptime(
                            start_time_str, "%Y-%m-%d_%H%M%S"
                        )
                        if start_time <= start_time and start_time <= end_time:
                            images_list.append(
                                {
                                    "filename": str(
                                        img_file.relative_to(base_directory)
                                    ),
                                    "start_time": start_time - delta_t,
                                    "end_time": start_time + delta_t,
                                }
                            )
                    except ValueError:
                        num_filename_errors += 1
                        warnings.warn(
                            "Permasense data integrity, the following is not a valid image filename and will be ignored: %s"
                            % img_file
                        )
                        continue
754

matthmey's avatar
matthmey committed
755
756
757
758
759
760
761
762
763
764
765
766
        segments = pd.DataFrame(images_list)
        segments.drop_duplicates(inplace=True, subset="start_time")
        segments.start_time = pd.to_datetime(segments.start_time, utc=True)
        segments.end_time = pd.to_datetime(segments.end_time, utc=True)
        segments.sort_values("start_time")

        return segments

    def get_image_filename(self, timestamp):
        """ Checks wether an image exists for exactly the time of timestamp and returns its filename

            timestamp: datetime object for which the filename should be returned
767

matthmey's avatar
matthmey committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        # Returns
            The filename if the file exists, None if there is no file
        """

        datadir = self.base_directory
        new_filename = (
            datadir
            + timestamp.strftime("%Y-%m-%d")
            + "/"
            + timestamp.strftime("%Y%m%d_%H%M%S")
            + ".JPG"
        )
        old_filename = (
            datadir
            + timestamp.strftime("%Y-%m-%d")
            + "/"
            + timestamp.strftime("%Y-%m-%d_%H%M%S")
            + ".JPG"
        )

        if os.path.isfile(new_filename):
            return new_filename
        elif os.path.isfile(old_filename):
            return old_filename
        else:
            return None

    def get_nearest_image_url(self, IMGparams, imgdate, floor=False):
        if floor:
            date_beg = imgdate - dt.timedelta(hours=4)
            date_end = imgdate
        else:
            date_beg = imgdate
            date_end = imgdate + dt.timedelta(hours=4)

        vs = []
        # predefine vs list
        field = []
        # predefine field list
        c_vs = []
        c_field = []
        c_join = []
        c_min = []
        c_max = []

        vs = vs + ["matterhorn_binary__mapped"]
        field = field + ["ALL"]
        # select only data from one sensor (position 3)
        c_vs = c_vs + ["matterhorn_binary__mapped"]
        c_field = c_field + ["position"]
        c_join = c_join + ["and"]
        c_min = c_min + ["18"]
        c_max = c_max + ["20"]

        c_vs = c_vs + ["matterhorn_binary__mapped"]
        c_field = c_field + ["file_complete"]
        c_join = c_join + ["and"]
        c_min = c_min + ["0"]
        c_max = c_max + ["1"]

        # create url which retrieves the csv data file
        url = "http://data.permasense.ch/multidata?"
        url = url + "time_format=" + "iso"
        url = url + "&from=" + date_beg.strftime("%d/%m/%Y+%H:%M:%S")
        url = url + "&to=" + date_end.strftime("%d/%m/%Y+%H:%M:%S")
        for i in range(0, len(vs), 1):
            url = url + "&vs[%d]=%s" % (i, vs[i])
            url = url + "&field[%d]=%s" % (i, field[i])

        for i in range(0, len(c_vs), 1):
            url = url + "&c_vs[%d]=%s" % (i, c_vs[i])
            url = url + "&c_field[%d]=%s" % (i, c_field[i])
            url = url + "&c_join[%d]=%s" % (i, c_join[i])
            url = url + "&c_min[%d]=%s" % (i, c_min[i])
            url = url + "&c_max[%d]=%s" % (i, c_max[i])

        url = url + "&timeline=%s" % ("generation_time")

        # print(url)
        d = pd.read_csv(url, skiprows=2)

        # print(d)

        # print(type(d['#data'].values))
        d["data"] = [s.replace("&amp;", "&") for s in d["data"].values]

        d.sort_values(by="generation_time")
        d["generation_time"] = pd.to_datetime(d["generation_time"], utc=True)

        if floor:
            data_str = d["data"].iloc[0]
            data_filename = d["relative_file"].iloc[0]
            # print(d['generation_time'].iloc[0])
            img_timestamp = d["generation_time"].iloc[0]
        else:
            data_str = d["data"].iloc[-1]
            data_filename = d["relative_file"].iloc[-1]
            # print(d['generation_time'].iloc[-1])
            img_timestamp = d["generation_time"].iloc[-1]

        file_extension = data_filename[-3:]
        base_url = "http://data.permasense.ch"
        # print(base_url + data_str)

        return base_url + data_str, img_timestamp, file_extension


class MHDSLRImages(MHDSLRFilenames):
    def __init__(
        self,
        base_directory=None,
        method="directory",
        output_format="xarray",
        start_time=None,
        end_time=None,
    ):
        super().__init__(
            base_directory=base_directory,
            method=method,
            start_time=start_time,
            end_time=end_time,
        )
        self.config["output_format"] = output_format

matthmey's avatar
matthmey committed
892
    def forward(self, data=None, request=None):
893
        filenames = super().forward(request=request)
matthmey's avatar
matthmey committed
894

895
        if request["output_format"] is "xarray":
matthmey's avatar
matthmey committed
896
            return self.construct_xarray(filenames)
897
        elif request["output_format"] is "base64":
matthmey's avatar
matthmey committed
898
899
900
901
            return self.construct_base64(filenames)
        else:
            output_formats = ["xarray", "base64"]
            raise RuntimeError(
902
                f"The {request['output_format']} output_format is not supported. Allowed formats are {output_formats}"
matthmey's avatar
matthmey committed
903
904
905
906
907
908
909
910
911
912
913
914
915
            )

    def construct_xarray(self, filenames):
        images = []
        times = []
        for timestamp, element in filenames.iterrows():
            filename = Path(self.config["base_directory"]).joinpath(element.filename)
            img = Image.open(filename)
            images.append(np.array(img))
            times.append(timestamp)

        images = np.array(images)
        data = xr.DataArray(
matthmey's avatar
matthmey committed
916
            images, coords={"time": times}, dims=["time", "x", "y", "c"], name="Image"
matthmey's avatar
matthmey committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        )
        data.attrs["format"] = "jpg"

        return data

    def construct_base64(self, filenames):
        images = []
        times = []
        for timestamp, element in filenames.iterrows():
            filename = Path(self.config["base_directory"]).joinpath(element.filename)
            img = Image.open(filename)
            img_base64 = base64.b64encode(img.tobytes())
            images.append(img_base64)
            times.append(timestamp)

        images = np.array(images).reshape((-1, 1))
matthmey's avatar
matthmey committed
933
934
935
        data = xr.DataArray(
            images, coords={"time": times}, dims=["time", "base64"], name="Base64Image"
        )
matthmey's avatar
matthmey committed
936
937
938
939
940
941
942
943
        data.attrs["format"] = "jpg"

        return data


class Freezer(StuettNode):
    def __init__(self, store):
        self.store = store
944

matthmey's avatar
matthmey committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
    def configure(self, requests):
        """ 

        Arguments:
            request {list} -- List of requests

        Returns:
            dict -- Original, updated or merged request(s) 
        """
        requests = super().configure(requests)

        # TODO: check if data is available for requested time period

        # TODO: check how we need to update the boundaries such that we get data that fits and that is available
        # TODO: with only one start/end_time it might be inefficient for the case where [unavailable,available,unavailable] since we need to load everything
        #      one option could be to duplicate the graph by returning multiple requests...

        # TODO: make a distinction between requested start_time and freeze_output_start_time

matthmey's avatar
matthmey committed
964
        # TODO: add node specific hash to freeze_output_start_time (there might be multiple in the graph) <- probably not necessary because we receive a copy of the request which is unique to this node
matthmey's avatar
matthmey committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
        # TODO: maybe the configuration method must add (and delete) the node name in the request?

        # we always require a request to crop out the right time period
        requests["requires_request"] = True

        return requests

    def to_zarr(self, x):
        x = x.to_dataset(name="frozen")
        # x = x.chunk({name: x[name].shape for name in list(x.dims)})
        # zarr_dataset = zarr.open(self.store, mode='r')
        x.to_zarr(self.store, append_dim="time")

    def open_zarr(self, requests):
        ds_zarr = xr.open_zarr(self.store)
980
        print("read", ds_zarr)
matthmey's avatar
matthmey committed
981

982
    def forward(self, data=None, request=None):
matthmey's avatar
matthmey committed
983

984
985
        self.to_zarr(data)
        self.open_zarr(request)
matthmey's avatar
matthmey committed
986

987
        return data
matthmey's avatar
matthmey committed
988
989
990
991
992
        # TODO: check request start_time and load the data which is available, store the data which is not available
        # TODO: crop


class CsvSource(DataSource):
matthmey's avatar
matthmey committed
993
994
995
996
997
    def __init__(self, filename=None, start_time=None, end_time=None, **kwargs):
        super().__init__(
            filename=filename, start_time=start_time, end_time=end_time, kwargs=kwargs
        )

matthmey's avatar
matthmey committed
998
999
    def forward(self, data=None, request=None):
        print(request)
1000
        csv = pd.read_csv(request["filename"])
matthmey's avatar
matthmey committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        csv.set_index("time", inplace=True)
        csv.index = pd.to_datetime(csv.index, utc=True).tz_localize(
            None
        )  # TODO: change when xarray #3291 is fixed

        x = xr.DataArray(csv, dims=["time", "name"], name="CSV")

        try:
            unit_coords = []
            name_coords = []
            for name in x.coords["name"].values:
                unit = re.findall(r"\[(.*)\]", name)[0]
                name = re.sub(r"\[.*\]", "", name).lstrip().rstrip()

                name_coords.append(name)
                unit_coords.append(unit)

            x.coords["name"] = name_coords
            x = x.assign_coords({"unit": ("name", unit_coords)})
        except:
            # TODO: add a warning or test explicitly if units exist
            pass

1024
1025
1026
1027
        if "start_time" not in request:
            request["start_time"] = x.coords["time"][0]
        if "end_time" not in request:
            request["end_time"] = x.coords["time"][-1]
matthmey's avatar
matthmey committed
1028

1029
        x = x.sel(time=slice(request["start_time"], request["end_time"]))
matthmey's avatar
matthmey committed
1030

1031
1032
1033
        return x


matthmey's avatar
matthmey committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
def to_datetime(x):
    return pd.to_datetime(x, utc=True).tz_localize(
        None
    )  # TODO: change when xarray #3291 is fixed


class BoundingBoxAnnotation(DataSource):
    def __init__(
        self,
        filename=None,
        start_time=None,
        end_time=None,
        converters={"time": to_datetime},
        **kwargs,
    ):
        super().__init__(
            filename=filename,
            start_time=start_time,
            end_time=end_time,
            converters=converters,
            kwargs=kwargs,
        )

matthmey's avatar
matthmey committed
1057
    def forward(self, data=None, request=None):
1058
        csv = pd.read_csv(request["filename"])
matthmey's avatar
matthmey committed
1059
1060
1061
1062
1063
1064
1065
1066

        targets = xr.DataArray(csv["__target"], dims=["index"], name="Annotation")

        for key in csv:
            if key == "__target":
                continue
            targets = targets.assign_coords({key: ("index", csv[key])})

1067
1068
1069
        for key in request["converters"]:
            if key in request["converters"]:
                converter = request["converters"][key]
matthmey's avatar
matthmey committed
1070
1071
1072
1073
1074
1075
1076
1077
            else:
                converter = lambda x: x
            if not callable(converter):
                raise RuntimeError("Please provide a callable as column converter")
            targets = targets.assign_coords({key: ("index", converter(targets[key]))})

        return targets

1078
1079

def check_overlap(data0, data1, sort_data0=True, sort_data1=True):
matthmey's avatar
matthmey committed
1080
    if sort_data0:
1081
        data0 = data0.sortby("time")
matthmey's avatar
matthmey committed
1082
    if sort_data1:
1083
        data1 = data1.sortby("time")
matthmey's avatar
matthmey committed
1084
1085
1086
1087
1088
1089

    # data0['start_time'] = pd.to_datetime(data0['start_time'],utc=True)
    # data0['end_time'] = pd.to_datetime(data0['end_time'],utc=True)
    # data1['start_time'] = pd.to_datetime(data1['start_time'],utc=True)
    # data1['end_time'] = pd.to_datetime(data1['end_time'],utc=True)

1090
1091
1092
1093
1094
    data0_start_time = list(pd.to_datetime(data0["start_time"], utc=True))
    data0_end_time = list(pd.to_datetime(data0["end_time"], utc=True))
    data1_start_time = list(pd.to_datetime(data1["start_time"], utc=True))
    data1_end_time = list(pd.to_datetime(data1["end_time"], utc=True))

matthmey's avatar
matthmey committed
1095
1096
1097
1098
1099
1100
1101
    overlap_indices = []
    # print(data0.head())
    num_overlaps = 0
    start_idx = 0
    for i in range(len(data0)):
        # data0_df = data0.iloc[i]
        data0_start = data0_start_time[i]
1102
        data0_end = data0_end_time[i]
matthmey's avatar
matthmey committed
1103
        # print(data0_df['start_time'])
1104
        label = "no data"
matthmey's avatar
matthmey committed
1105
        ext = []
1106
        for j in range(start_idx, len(data1)):
matthmey's avatar
matthmey committed
1107
1108
            # data1_df = data1.iloc[j]
            data1_start = data1_start_time[j]
1109
            data1_end = data1_end_time[j]
matthmey's avatar
matthmey committed
1110
1111
            # print(type(data0_df['end_time']),type(data1_df['start_time']))
            # check if data0_df is completly before data1_df, then all following items will also be non overlapping (sorted list data1)
1112
            cond0 = data0_end < data1_start
matthmey's avatar
matthmey committed
1113
1114
1115
1116
1117
1118
1119
            if cond0 == True:
                break

            # if data0_df['label'] != data1_df['label']:
            #     continue

            # second condition: data0_df is after data1_df, all items before data1_df can be ignored (sorted list data0)
1120
            cond1 = data0_start > data1_end
matthmey's avatar
matthmey committed
1121

1122
            if cond1:
matthmey's avatar
matthmey committed
1123
1124
1125
1126
1127
                start_idx = j

            if not (cond0 or cond1):
                # overlap
                num_overlaps += 1
1128
1129
                label = "data"
                overlap_indices.append([int(i), int(j)])
matthmey's avatar
matthmey committed
1130
1131
1132
1133

    return overlap_indices


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
# from xbatcher: https://github.com/rabernat/xbatcher/
def _slices(dimsize, size, stride=None):
    # return a list of slices to chop up a single dimension
    slices = []
    assert stride < dimsize
    for start in range(0, dimsize, stride):  # TODO include hopsize/overlapping windows
        end = start + size
        if end <= dimsize:
            slices.append(slice(start, end))
    return slices


def get_slices(ds, dims, dataset_slice=None, stride={}):
    dim_slices = []
    for dim in dims:
        print(dim)
        print(ds.sizes)
        if dataset_slice is None:
            dimsize = slice(0, ds.sizes[dim])
        else:
            dimsize = dataset_slice[dim]
        size = dims[dim]
        print(size)
        _stride = stride.get(dim, size)
        dim_slices.append(_slices(dimsize, size, _stride))
    return dim_slices
    # for slices in itertools.product(*dim_slices):
    #     selector = {key: slice for key, slice in zip(dims, slices)}
    #     yield ds.isel(**selector)


class LabeledDataset(DataSource):
    def __init__(
        self, data, label, trim=True, dataset_slice=None, batch_dims={}, pad=False
    ):
matthmey's avatar
matthmey committed
1169

1170
1171
1172
        """ trim ... trim the dataset to the available labels
            dataset_slice: which part of the dataset to use
        """
matthmey's avatar
matthmey committed
1173
        # load annotation source and datasource
1174

matthmey's avatar
matthmey committed
1175
1176
1177
1178
        # define an dataset index containing all indices of the datasource (e.g. timestamps or time period) which should be in this dataset
        d = data()
        l = label()

1179
1180
1181
1182
1183
1184
1185
        # print(d['time'])
        # print(l['time'])

        d = d.sortby("time")
        l = l.sortby("time")

        # restrict it to the available labels
matthmey's avatar
matthmey committed
1186

1187
1188
1189
        # indices = check_overlap(d,l)
        slices = get_slices(d, batch_dims, dataset_slice=dataset_slice)
        print(slices)
matthmey's avatar
matthmey committed
1190
        exit()
1191
1192
        # TODO: get statistics to what was left out

matthmey's avatar
matthmey committed
1193
        # go through dataset index and and check overlap of datasource indices and annotation indices
1194

matthmey's avatar
matthmey committed
1195
1196
        # generate new annotation set with regards to the datasourceindices (requires to generate and empty annotation set add new labels to the it)
        # if wanted generate intermediate freeze results of datasource and annotations
1197
        # go through all items of the datasource
matthmey's avatar
matthmey committed
1198
1199
        pass

matthmey's avatar
matthmey committed
1200
    def forward(self, data=None, request=None):
matthmey's avatar
matthmey committed
1201
        pass
matthmey's avatar
matthmey committed
1202

1203

matthmey's avatar
matthmey committed
1204
class PytorchDataset(DataSource):  # TODO: extends pytorch dataset
1205
    def __init__(self, source=None):
matthmey's avatar
matthmey committed
1206
        """ Creates a pytorch like dataset from a data source and a label source.
1207
1208
1209
1210
1211
            
        Arguments:
            DataSource {[type]} -- [description]
            config {dict} -- configuration for labels
        """
1212
        super().__init__(source=source)
1213

matthmey's avatar
matthmey committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
    def build_dataset(self):
        # load annotation source and datasource

        # define an dataset index containing all indices of the datasource (e.g. timestamps or time period) which should be in this dataset

        # go through dataset index and and check overlap of datasource indices and annotation indices

        # generate new annotation set with regards to the datasourceindices (requires to generate and empty annotation set add new labels to the it)

        # if wanted generate intermediate freeze results of datasource and annotations

        # go through all items of the datasource
        pass

matthmey's avatar
matthmey committed
1228
    def forward(self, data=None, request=None):
1229
1230

        return x