management.py 38.6 KB
Newer Older
matthmey's avatar
matthmey committed
1
from ..global_config import get_setting, setting_exists, set_setting
2
3
from ..core.graph import StuettNode

matthmey's avatar
matthmey committed
4
import os
5
6
7
8
9
10
11
12

import dask
import logging
import obspy
from obspy.clients.fdsn import Client
from obspy import UTCDateTime
from obsplus import obspy_to_array

matthmey's avatar
matthmey committed
13
14
15
16
import zarr
import xarray as xr
from PIL import Image
import base64
matthmey's avatar
matthmey committed
17
import re
18

matthmey's avatar
matthmey committed
19
20
21
22
from pathlib import Path
import warnings

# TODO: revisit the following packages
23
24
import numpy as np
import pandas as pd
matthmey's avatar
matthmey committed
25
import datetime as dt
26
from pathlib import Path
matthmey's avatar
matthmey committed
27

28
29

class DataSource(StuettNode):
matthmey's avatar
matthmey committed
30
31
    def __init__(self, **kwargs):
        super().__init__(kwargs=kwargs)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    def __call__(self, data=None, request=None, delayed=False):
        if data is not None:
            if request is None:
                request = data
            else:
                warnings.warning(
                    "Two inputs (data, request) provided to the DataSource but it can only handle a request. Choosing request. "
                )

        # DataSource only require a request
        # Therefore merge permanent config and request
        config = self.config.copy()  # TODO: do we need a deep copy?
        if request is not None:
            config.update(request)

        if delayed:
            return dask.delayed(self.forward(config))
        else:
            return self.forward(config)
52

matthmey's avatar
matthmey committed
53
    def configure(self, requests=None):
54
55
56
57
58
59
60
61
62
63
        """ Default configure for DataSource nodes
            Same as configure from StuettNode but adds is_source flag

        Arguments:
            request {list} -- List of requests

        Returns:
            dict -- Original request or merged requests 
        """
        requests = super().configure(requests)
matthmey's avatar
matthmey committed
64
        requests["requires_request"] = True
65
66
67
68
69

        return requests


class SeismicSource(DataSource):
matthmey's avatar
matthmey committed
70
71
    def __init__(
        self,
72
        path=None,
matthmey's avatar
matthmey committed
73
74
75
76
77
78
79
80
        station=None,
        channel=None,
        start_time=None,
        end_time=None,
        use_arclink=False,
        return_obspy=False,
        **kwargs,
    ):  # TODO: update description
81
82
83
84
        """ Seismic data source to get data from permasense
            The user can predefine the source's settings or provide them in a request
            Predefined setting should never be updated (to stay thread safe), but will be ignored
            if request contains settings
matthmey's avatar
matthmey committed
85
86
87
88
89

        Keyword Arguments:
            config {dict}       -- Configuration for the seismic source (default: {{}})
            use_arclink {bool}  -- If true, downloads the data from the arclink service (authentication required) (default: {False})
            return_obspy {bool} -- By default an xarray is returned. If true, an obspy stream will be returned (default: {False})
90
        """
matthmey's avatar
matthmey committed
91
        super().__init__(
92
            path=path,
matthmey's avatar
matthmey committed
93
94
95
96
97
98
99
100
            station=station,
            channel=channel,
            start_time=start_time,
            end_time=end_time,
            use_arclink=use_arclink,
            return_obspy=return_obspy,
            kwargs=kwargs,
        )
101

102
103
    def forward(self, request=None):
        config = request
104

matthmey's avatar
matthmey committed
105
        if config["use_arclink"]:
106
107
108
109
110
111
112
113
            try:
                arclink = get_setting("arclink")
            except KeyError as err:
                raise RuntimeError(
                    f"The following error occured \n{err}. "
                    "Please provide either the credentials to access arclink or a path to the dataset"
                )

matthmey's avatar
matthmey committed
114
115
            arclink_user = arclink["user"]
            arclink_password = arclink["password"]
matthmey's avatar
matthmey committed
116
            fdsn_client = Client(
matthmey's avatar
matthmey committed
117
118
119
120
                base_url="http://arclink.ethz.ch",
                user=arclink_user,
                password=arclink_password,
            )
matthmey's avatar
matthmey committed
121
            x = fdsn_client.get_waveforms(
matthmey's avatar
matthmey committed
122
123
124
125
126
127
128
129
                network="4D",
                station=config["station"],
                location="A",
                channel=config["channel"],
                starttime=UTCDateTime(config["start_time"]),
                endtime=UTCDateTime(config["end_time"]),
                attach_response=True,
            )
130

matthmey's avatar
matthmey committed
131
            # TODO: potentially resample
matthmey's avatar
matthmey committed
132

matthmey's avatar
matthmey committed
133
        else:  # 20180914 is last full day available in permasense_vault
134
            # logging.info('Loading seismic with fdsn')
matthmey's avatar
matthmey committed
135
            x = self.get_obspy_stream(
136
                config["path"],
matthmey's avatar
matthmey committed
137
138
139
140
141
142
                config["start_time"],
                config["end_time"],
                config["station"],
                config["channel"],
            )

143
144
145
146
147
        x = x.slice(UTCDateTime(config["start_time"]), UTCDateTime(config["end_time"]))

        # TODO: remove response x.remove_response(output=vel)
        # x = self.process_seismic_data(x)

matthmey's avatar
matthmey committed
148
        if not config["return_obspy"]:
matthmey's avatar
matthmey committed
149
150
            x = obspy_to_array(x)

151
152
153
154
155
156
157
158
            # we assume that all starttimes are equal
            starttime = x.starttime.values.squeeze()[0]
            for s in x.starttime.values.squeeze():
                if s != starttime:
                    raise RuntimeError(
                        "Please make sure that starttime of each seimsic channel is equal"
                    )

matthmey's avatar
matthmey committed
159
            # change time coords from relative to absolute time
160
            starttime = obspy.UTCDateTime(starttime).datetime
matthmey's avatar
matthmey committed
161
162
163
            starttime = pd.to_datetime(starttime, utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed
matthmey's avatar
matthmey committed
164
165
            timedeltas = pd.to_timedelta(x["time"].values, unit="seconds")
            xt = starttime + timedeltas
matthmey's avatar
matthmey committed
166
167
168
            x["time"] = pd.to_datetime(xt, utc=True).tz_localize(
                None
            )  # TODO: change when xarray #3291 is fixed
matthmey's avatar
matthmey committed
169
            del x.attrs["stats"]
170
171
172

        return x

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def process_seismic_data(
        self,
        stream,
        remove_response=True,
        unit="VEL",
        station_inventory=None,
        detrend=True,
        taper=False,
        pre_filt=(0.025, 0.05, 124.0, 125.0),
        water_level=60,
        apply_filter=True,
        freqmin=0.002,
        freqmax=125,
        resample=False,
        resample_rate=250,
        rotation_angle=None,
    ):
        # author: Samuel Weber
        if station_inventory is None:
            station_inventory = Path(get_setting("metadata_directory")).joinpath(
                "inventory_stations__MH.xml"
            )

        print(station_inventory)
        inv = obspy.read_inventory(str(station_inventory))
        # st = stream.copy()
        st = stream
        st.attach_response(inv)

        if taper:
            st.detrend("demean")
            st.detrend("linear")

        if taper:
            st.taper(max_percentage=0.05)

        if remove_response:
            if hasattr(st[0].stats, "response"):
                st.remove_response(
                    output=unit,
                    pre_filt=pre_filt,
                    plot=False,
                    zero_mean=False,
                    taper=False,
                    water_level=water_level,
                )
            else:
                st.remove_response(
                    output=unit,
                    inventory=inv,
                    pre_filt=pre_filt,
                    plot=False,
                    zero_mean=False,
                    taper=False,
                    water_level=water_level,
                )

        if taper:
            st.detrend("demean")
            st.detrend("linear")

        if taper:
            st.taper(max_percentage=0.05)

        if apply_filter:
            st.filter("bandpass", freqmin=freqmin, freqmax=freqmax)

        if resample:
            st.resample(resample_rate)

        if rotation_angle is None:
            rotation_angle = np.nan
        if not np.isnan(rotation_angle):
            st.rotate("NE->RT", back_azimuth=int(rotation_angle), inventory=inv)

        return st

matthmey's avatar
matthmey committed
250
251
    def get_obspy_stream(
        self,
252
        path,
matthmey's avatar
matthmey committed
253
254
255
256
257
258
259
260
        start_time,
        end_time,
        station,
        channels,
        pad=False,
        verbose=False,
        fill=0,
        fill_sampling_rate=1000,
261
        old_stationname=False,
matthmey's avatar
matthmey committed
262
    ):
263
264
265
266
        """    
        Loads the microseismic data for the given timeframe into a miniseed file.

        Arguments:
matthmey's avatar
matthmey committed
267
268
            start_time {datetime} -- start timestamp of the desired obspy stream
            end_time {datetime} -- end timestamp of the desired obspy stream
269
270
271
272
273
274
275
276
277
278
279
        
        Keyword Arguments:
            pad {bool} -- If padding is true, the data will be zero padded if the data is not consistent
            fill {} -- If numpy.nan or fill value: error in the seismic stream will be filled with the value. If None no fill will be used
            verbose {bool} -- If info should be printed

        Returns:
            obspy stream -- obspy stream with up to three channels
                            the stream's channels will be sorted alphabetically
        """

matthmey's avatar
matthmey committed
280
        if not isinstance(channels, list):
281
            channels = [channels]
282
        datadir = Path(path)
283
284
285

        if not os.path.isdir(datadir):
            # TODO: should this be an error or only a warning. In a period execution this could stop the whole script
matthmey's avatar
matthmey committed
286
            raise IOError(
287
                "Cannot find the path {}. Please provide a correct path to the permasense geophone directory".format(
matthmey's avatar
matthmey committed
288
289
290
                    datadir
                )
            )
291
292

        # We will get the full hours seismic data and trim it to the desired length afterwards
matthmey's avatar
matthmey committed
293
294
295
296
        tbeg_hours = pd.to_datetime(start_time).replace(
            minute=0, second=0, microsecond=0
        )
        timerange = pd.date_range(start=tbeg_hours, end=end_time, freq="H")
297

matthmey's avatar
matthmey committed
298
        non_existing_files_ts = []  # keep track of nonexisting files
299
300
301
302
303
304
305
306
307
308

        # drawback of memmap files is that we need to calculate the size beforehand
        stream = obspy.Stream()

        idx = 0
        ## loop through all hours
        for i in range(len(timerange)):
            # start = time.time()
            h = timerange[i]

matthmey's avatar
matthmey committed
309
            st_list = obspy.Stream()
310

matthmey's avatar
matthmey committed
311
            datayear = timerange[i].strftime("%Y/")
312
313
314
315
            if old_stationname:
                station = (
                    "MHDL" if station == "MH36" else "MHDT"
                )  # TODO: do not hardcode it
316
317
            filenames = {}
            for channel in channels:
318
319
320
321
322
                filenames[channel] = datadir.joinpath(
                    station,
                    datayear,
                    "%s.D/" % channel,
                    "4D.%s.A.%s.D." % (station, channel)
matthmey's avatar
matthmey committed
323
                    + timerange[i].strftime("%Y%m%d_%H%M%S")
324
                    + ".miniseed",
matthmey's avatar
matthmey committed
325
326
327
                )
                # print(filenames[channel])
                if not os.path.isfile(filenames[channel]):
328
329
                    non_existing_files_ts.append(timerange[i])

matthmey's avatar
matthmey committed
330
331
332
333
334
335
336
                    warnings.warn(
                        RuntimeWarning(
                            "Warning file not found for {} {}".format(
                                timerange[i], filenames[channel]
                            )
                        )
                    )
337
338
339

                    if fill is not None:
                        # create empty stream of fill value
matthmey's avatar
matthmey committed
340
341
342
343
344
345
346
347
348
349
350
351
352
                        arr = (
                            np.ones(
                                (
                                    int(
                                        np.ceil(
                                            fill_sampling_rate
                                            * dt.timedelta(hours=1).total_seconds()
                                        )
                                    ),
                                )
                            )
                            * fill
                        )
353
354
355
356
                        st = obspy.Stream([obspy.Trace(arr)])
                    else:
                        continue
                else:
357
                    st = obspy.read(str(filenames[channel]))
358
359
360

                st_list += st

matthmey's avatar
matthmey committed
361
362
363
364
365
366
367
368
369
370
371
            stream_h = st_list.merge(method=0, fill_value=fill)
            start_time_0 = start_time if i == 0 else h
            end_time_0 = (
                end_time if i == len(timerange) - 1 else h + dt.timedelta(hours=1)
            )
            segment_h = stream_h.trim(
                obspy.UTCDateTime(start_time_0),
                obspy.UTCDateTime(end_time_0),
                pad=pad,
                fill_value=fill,
            )
372
373
374
375
            stream += segment_h

        stream = stream.merge(method=0, fill_value=fill)

matthmey's avatar
matthmey committed
376
377
378
        stream.sort(
            keys=["channel"]
        )  # TODO: change this so that the order of the input channels list is maintained
379
380
381
382

        return stream


383
class MHDSLRFilenames(DataSource):
matthmey's avatar
matthmey committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    def __init__(
        self, base_directory=None, method="directory", start_time=None, end_time=None
    ):
        """ Fetches the DSLR images from the Matterhorn deployment, returns the image
            filename(s) corresponding to the end and start time provided in either the
            config dict or as a request to the __call__() function.          
        
        Arguments:
            StuettNode {[type]} -- [description]

        Keyword Arguments:
            base_directory {[type]} -- [description]
            method {str}     -- [description] (default: {'directory'})
        """
matthmey's avatar
matthmey committed
398
399
400
401
402
403
        super().__init__(
            base_directory=base_directory,
            method=method,
            start_time=start_time,
            end_time=end_time,
        )
404

405
    def forward(self, request=None):
matthmey's avatar
matthmey committed
406
407
408
409
        """Retrieves the images for the selected time period from the server. If only a start_time timestamp is provided, 
          the file with the corresponding date will be loaded if available. For periods (when start and end time are given) 
          all available images are indexed first to provide an efficient retrieval.
        
410
        Arguments:
matthmey's avatar
matthmey committed
411
412
413
414
415
416
417
            start_time {datetime} -- If only start_time is given the neareast available image is return. If also end_time is provided the a dataframe is returned containing image filenames from the first image after start_time until the last image before end_time.
        
        Keyword Arguments:
            end_time {datetime} -- end time of the selected period. see start_time for a description. (default: {None})
        
        Returns:
            dataframe -- Returns containing the image filenames of the selected period.
418
        """
419
        config = request
matthmey's avatar
matthmey committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        methods = ["directory", "web"]
        if config["method"].lower() not in methods:
            raise RuntimeError(
                f"The {config['method']} output_format is not supported. Allowed formats are {methods}"
            )

        if config["base_directory"] is None and output_format.lower() != "web":
            raise RuntimeError("Please provide a base_directory containing the images")

        if config["method"].lower() == "web":  # TODO: implement
            raise NotImplementedError("web fetch has not been implemented yet")

        start_time = config["start_time"]
        end_time = config["end_time"]

        if start_time is None:
            raise RuntimeError("Please provide a least start time")

        # if it is not timezone aware make it
        # if start_time.tzinfo is None:
        #     start_time = start_time.replace(tzinfo=timezone.utc)

        # If there is no tmp_dir we can try to load the file directly, otherwise
        # there will be a warning later in this function and the user should
        # set a tmp_dir
        if end_time is None and (
            not setting_exists("user_dir") or not os.path.isdir(get_setting("user_dir"))
        ):
            image_filename = self.get_image_filename(start_time)
            if image_filename is not None:
                return image_filename

        # If we have already loaded the dataframe in the current session we can use it
        if setting_exists("image_list_df"):
            imglist_df = get_setting("image_list_df")
        else:
            if setting_exists("user_dir") and os.path.isdir(get_setting("user_dir")):
                # Otherwise we need to load the filename dataframe from disk
                imglist_filename = (
                    os.path.join(get_setting("user_dir"), "")
                    + "full_image_integrity.parquet"
                )

                # If it does not exist in the temporary folder of our application
                # We are going to create it
                if os.path.isfile(imglist_filename):
                    imglist_df = pd.read_parquet(
                        imglist_filename
                    )  # TODO: avoid too many different formats
                else:
                    # we are going to load the full list => no arguments
                    imglist_df = self.image_integrity(config["base_directory"])
                    imglist_df.to_parquet(imglist_filename)
            else:
                # if there is no tmp_dir we can load the image list but
                # we should warn the user that this is inefficient
                imglist_df = self.image_integrity(config["base_directory"])
                warnings.warn(
                    "No temporary directory was set. You can speed up multiple runs of your application by setting a temporary directory"
                )

            # TODO: make the index timezone aware
            imglist_df.set_index("start_time", inplace=True)
            imglist_df.index = pd.to_datetime(imglist_df.index, utc=True)
            imglist_df.sort_index(inplace=True)

            set_setting("image_list_df", imglist_df)

        if end_time is None:
            if start_time < imglist_df.index[0]:
                start_time = imglist_df.index[0]
491

matthmey's avatar
matthmey committed
492
493
494
495
496
497
            return imglist_df.iloc[
                imglist_df.index.get_loc(start_time, method="nearest")
            ]
        else:
            # if end_time.tzinfo is None:
            #     end_time = end_time.replace(tzinfo=timezone.utc)
498
499
500
501
            print(imglist_df)
            if start_time > imglist_df.index[-1] or end_time < imglist_df.index[0]:
                # return empty dataframe
                return imglist_df[0:0]
matthmey's avatar
matthmey committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

            if start_time < imglist_df.index[0]:
                start_time = imglist_df.index[0]
            if end_time > imglist_df.index[-1]:
                end_time = imglist_df.index[-1]

            return imglist_df.iloc[
                imglist_df.index.get_loc(
                    start_time, method="bfill"
                ) : imglist_df.index.get_loc(end_time, method="ffill")
                + 1
            ]

    def image_integrity(
        self, base_directory, start_time=None, end_time=None, delta_seconds=0
    ):
        """ Checks which images are available on the permasense server
        
        Keyword Arguments:
            start_time {[type]} -- datetime object giving the lower bound of the time range which should be checked. 
                                   If None there is no lower bound. (default: {None})
            end_time {[type]} --   datetime object giving the upper bound of the time range which should be checked.
                                   If None there is no upper bound (default: {None})
            delta_seconds {int} -- Determines the 'duration' of an image in the output dataframe.
                                   start_time  = image_time+delta_seconds
                                   end_time    = image_time-delta_seconds (default: {0})
        
        Returns:
            DataFrame -- Returns a pandas dataframe with a list containing filename relative to self.base_directory, 
                         start_time and end_time start_time and end_time can vary depending on the delta_seconds parameter
        """
        """ Checks which images are available on the permasense server
534

matthmey's avatar
matthmey committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        Arguments:
            start_time:   
            end_time:   
            delta_seconds:  Determines the 'duration' of an image in the output dataframe.
                            start_time  = image_time+delta_seconds
                            end_time    = image_time-delta_seconds
        Returns:
            DataFrame -- 
        """
        if start_time is None:
            start_time = dt.datetime(
                1900, 1, 1
            )  # add random year which is before permasense installation started
        if end_time is None:
            end_time = dt.datetime.utcnow()

        tbeg_days = start_time.replace(hour=0, minute=0, second=0)
        tend_days = end_time.replace(hour=23, minute=59, second=59)

        delta_t = dt.timedelta(seconds=delta_seconds)
        num_filename_errors = 0
        images_list = []
        # p = Path(permasense_vault_dir + 'gsn-binaries/matterhorn/5015/camera1/')
        p = Path(base_directory)

        if not p.is_dir():
            warnings.warn(
                "Could not find the permasense image dataset. Please make sure it is available at {}".format(
                    str(p)
                )
            )

        for dir in p.glob("*/"):
            dir_date = dt.datetime.strptime(str(dir.name), "%Y-%m-%d")

            # limit the search to the explicit time range
            if dir_date < tbeg_days or dir_date > tend_days:
                continue

            for img_file in dir.glob("*"):
                # print(file.stem)
                start_time_str = img_file.stem

                try:
                    # start_time = datetime.strptime(start_time_str[:15], '%Y%m%d_%H%M%S')
                    start_time = dt.datetime.strptime(start_time_str, "%Y%m%d_%H%M%S")
                    if start_time <= start_time and start_time <= end_time:
                        images_list.append(
                            {
                                "filename": str(img_file.relative_to(base_directory)),
                                "start_time": start_time - delta_t,
                                "end_time": start_time + delta_t,
                            }
                        )
                except ValueError:
                    # try old naming convention
                    try:
                        # start_time = datetime.strptime(start_time_str[:17], '%Y-%m-%d_%H%M%S')
                        start_time = dt.datetime.strptime(
                            start_time_str, "%Y-%m-%d_%H%M%S"
                        )
                        if start_time <= start_time and start_time <= end_time:
                            images_list.append(
                                {
                                    "filename": str(
                                        img_file.relative_to(base_directory)
                                    ),
                                    "start_time": start_time - delta_t,
                                    "end_time": start_time + delta_t,
                                }
                            )
                    except ValueError:
                        num_filename_errors += 1
                        warnings.warn(
                            "Permasense data integrity, the following is not a valid image filename and will be ignored: %s"
                            % img_file
                        )
                        continue
613

matthmey's avatar
matthmey committed
614
615
616
617
618
619
620
621
622
623
624
625
        segments = pd.DataFrame(images_list)
        segments.drop_duplicates(inplace=True, subset="start_time")
        segments.start_time = pd.to_datetime(segments.start_time, utc=True)
        segments.end_time = pd.to_datetime(segments.end_time, utc=True)
        segments.sort_values("start_time")

        return segments

    def get_image_filename(self, timestamp):
        """ Checks wether an image exists for exactly the time of timestamp and returns its filename

            timestamp: datetime object for which the filename should be returned
626

matthmey's avatar
matthmey committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        # Returns
            The filename if the file exists, None if there is no file
        """

        datadir = self.base_directory
        new_filename = (
            datadir
            + timestamp.strftime("%Y-%m-%d")
            + "/"
            + timestamp.strftime("%Y%m%d_%H%M%S")
            + ".JPG"
        )
        old_filename = (
            datadir
            + timestamp.strftime("%Y-%m-%d")
            + "/"
            + timestamp.strftime("%Y-%m-%d_%H%M%S")
            + ".JPG"
        )

        if os.path.isfile(new_filename):
            return new_filename
        elif os.path.isfile(old_filename):
            return old_filename
        else:
            return None

    def get_nearest_image_url(self, IMGparams, imgdate, floor=False):
        if floor:
            date_beg = imgdate - dt.timedelta(hours=4)
            date_end = imgdate
        else:
            date_beg = imgdate
            date_end = imgdate + dt.timedelta(hours=4)

        vs = []
        # predefine vs list
        field = []
        # predefine field list
        c_vs = []
        c_field = []
        c_join = []
        c_min = []
        c_max = []

        vs = vs + ["matterhorn_binary__mapped"]
        field = field + ["ALL"]
        # select only data from one sensor (position 3)
        c_vs = c_vs + ["matterhorn_binary__mapped"]
        c_field = c_field + ["position"]
        c_join = c_join + ["and"]
        c_min = c_min + ["18"]
        c_max = c_max + ["20"]

        c_vs = c_vs + ["matterhorn_binary__mapped"]
        c_field = c_field + ["file_complete"]
        c_join = c_join + ["and"]
        c_min = c_min + ["0"]
        c_max = c_max + ["1"]

        # create url which retrieves the csv data file
        url = "http://data.permasense.ch/multidata?"
        url = url + "time_format=" + "iso"
        url = url + "&from=" + date_beg.strftime("%d/%m/%Y+%H:%M:%S")
        url = url + "&to=" + date_end.strftime("%d/%m/%Y+%H:%M:%S")
        for i in range(0, len(vs), 1):
            url = url + "&vs[%d]=%s" % (i, vs[i])
            url = url + "&field[%d]=%s" % (i, field[i])

        for i in range(0, len(c_vs), 1):
            url = url + "&c_vs[%d]=%s" % (i, c_vs[i])
            url = url + "&c_field[%d]=%s" % (i, c_field[i])
            url = url + "&c_join[%d]=%s" % (i, c_join[i])
            url = url + "&c_min[%d]=%s" % (i, c_min[i])
            url = url + "&c_max[%d]=%s" % (i, c_max[i])

        url = url + "&timeline=%s" % ("generation_time")

        # print(url)
        d = pd.read_csv(url, skiprows=2)

        # print(d)

        # print(type(d['#data'].values))
        d["data"] = [s.replace("&amp;", "&") for s in d["data"].values]

        d.sort_values(by="generation_time")
        d["generation_time"] = pd.to_datetime(d["generation_time"], utc=True)

        if floor:
            data_str = d["data"].iloc[0]
            data_filename = d["relative_file"].iloc[0]
            # print(d['generation_time'].iloc[0])
            img_timestamp = d["generation_time"].iloc[0]
        else:
            data_str = d["data"].iloc[-1]
            data_filename = d["relative_file"].iloc[-1]
            # print(d['generation_time'].iloc[-1])
            img_timestamp = d["generation_time"].iloc[-1]

        file_extension = data_filename[-3:]
        base_url = "http://data.permasense.ch"
        # print(base_url + data_str)

        return base_url + data_str, img_timestamp, file_extension


class MHDSLRImages(MHDSLRFilenames):
    def __init__(
        self,
        base_directory=None,
        method="directory",
        output_format="xarray",
        start_time=None,
        end_time=None,
    ):
        super().__init__(
            base_directory=base_directory,
            method=method,
            start_time=start_time,
            end_time=end_time,
        )
        self.config["output_format"] = output_format

751
752
    def forward(self, request):
        filenames = super().forward(request=request)
matthmey's avatar
matthmey committed
753

754
        if request["output_format"] is "xarray":
matthmey's avatar
matthmey committed
755
            return self.construct_xarray(filenames)
756
        elif request["output_format"] is "base64":
matthmey's avatar
matthmey committed
757
758
759
760
            return self.construct_base64(filenames)
        else:
            output_formats = ["xarray", "base64"]
            raise RuntimeError(
761
                f"The {request['output_format']} output_format is not supported. Allowed formats are {output_formats}"
matthmey's avatar
matthmey committed
762
763
764
765
766
767
768
769
770
771
772
773
774
            )

    def construct_xarray(self, filenames):
        images = []
        times = []
        for timestamp, element in filenames.iterrows():
            filename = Path(self.config["base_directory"]).joinpath(element.filename)
            img = Image.open(filename)
            images.append(np.array(img))
            times.append(timestamp)

        images = np.array(images)
        data = xr.DataArray(
matthmey's avatar
matthmey committed
775
            images, coords={"time": times}, dims=["time", "x", "y", "c"], name="Image"
matthmey's avatar
matthmey committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        )
        data.attrs["format"] = "jpg"

        return data

    def construct_base64(self, filenames):
        images = []
        times = []
        for timestamp, element in filenames.iterrows():
            filename = Path(self.config["base_directory"]).joinpath(element.filename)
            img = Image.open(filename)
            img_base64 = base64.b64encode(img.tobytes())
            images.append(img_base64)
            times.append(timestamp)

        images = np.array(images).reshape((-1, 1))
matthmey's avatar
matthmey committed
792
793
794
        data = xr.DataArray(
            images, coords={"time": times}, dims=["time", "base64"], name="Base64Image"
        )
matthmey's avatar
matthmey committed
795
796
797
798
799
800
801
802
        data.attrs["format"] = "jpg"

        return data


class Freezer(StuettNode):
    def __init__(self, store):
        self.store = store
803

matthmey's avatar
matthmey committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    def configure(self, requests):
        """ 

        Arguments:
            request {list} -- List of requests

        Returns:
            dict -- Original, updated or merged request(s) 
        """
        requests = super().configure(requests)

        # TODO: check if data is available for requested time period

        # TODO: check how we need to update the boundaries such that we get data that fits and that is available
        # TODO: with only one start/end_time it might be inefficient for the case where [unavailable,available,unavailable] since we need to load everything
        #      one option could be to duplicate the graph by returning multiple requests...

        # TODO: make a distinction between requested start_time and freeze_output_start_time

matthmey's avatar
matthmey committed
823
        # TODO: add node specific hash to freeze_output_start_time (there might be multiple in the graph) <- probably not necessary because we receive a copy of the request which is unique to this node
matthmey's avatar
matthmey committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
        # TODO: maybe the configuration method must add (and delete) the node name in the request?

        # we always require a request to crop out the right time period
        requests["requires_request"] = True

        return requests

    def to_zarr(self, x):
        x = x.to_dataset(name="frozen")
        # x = x.chunk({name: x[name].shape for name in list(x.dims)})
        # zarr_dataset = zarr.open(self.store, mode='r')
        x.to_zarr(self.store, append_dim="time")

    def open_zarr(self, requests):
        ds_zarr = xr.open_zarr(self.store)
839
        print("read", ds_zarr)
matthmey's avatar
matthmey committed
840

841
    def forward(self, data=None, request=None):
matthmey's avatar
matthmey committed
842

843
844
        self.to_zarr(data)
        self.open_zarr(request)
matthmey's avatar
matthmey committed
845

846
        return data
matthmey's avatar
matthmey committed
847
848
849
850
851
        # TODO: check request start_time and load the data which is available, store the data which is not available
        # TODO: crop


class CsvSource(DataSource):
matthmey's avatar
matthmey committed
852
853
854
855
856
    def __init__(self, filename=None, start_time=None, end_time=None, **kwargs):
        super().__init__(
            filename=filename, start_time=start_time, end_time=end_time, kwargs=kwargs
        )

857
858
    def forward(self, request):
        csv = pd.read_csv(request["filename"])
matthmey's avatar
matthmey committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        csv.set_index("time", inplace=True)
        csv.index = pd.to_datetime(csv.index, utc=True).tz_localize(
            None
        )  # TODO: change when xarray #3291 is fixed

        x = xr.DataArray(csv, dims=["time", "name"], name="CSV")

        try:
            unit_coords = []
            name_coords = []
            for name in x.coords["name"].values:
                unit = re.findall(r"\[(.*)\]", name)[0]
                name = re.sub(r"\[.*\]", "", name).lstrip().rstrip()

                name_coords.append(name)
                unit_coords.append(unit)

            x.coords["name"] = name_coords
            x = x.assign_coords({"unit": ("name", unit_coords)})
        except:
            # TODO: add a warning or test explicitly if units exist
            pass

882
883
884
885
        if "start_time" not in request:
            request["start_time"] = x.coords["time"][0]
        if "end_time" not in request:
            request["end_time"] = x.coords["time"][-1]
matthmey's avatar
matthmey committed
886

887
        x = x.sel(time=slice(request["start_time"], request["end_time"]))
matthmey's avatar
matthmey committed
888

889
890
891
        return x


matthmey's avatar
matthmey committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
def to_datetime(x):
    return pd.to_datetime(x, utc=True).tz_localize(
        None
    )  # TODO: change when xarray #3291 is fixed


class BoundingBoxAnnotation(DataSource):
    def __init__(
        self,
        filename=None,
        start_time=None,
        end_time=None,
        converters={"time": to_datetime},
        **kwargs,
    ):
        super().__init__(
            filename=filename,
            start_time=start_time,
            end_time=end_time,
            converters=converters,
            kwargs=kwargs,
        )

915
916
    def forward(self, request):
        csv = pd.read_csv(request["filename"])
matthmey's avatar
matthmey committed
917
918
919
920
921
922
923
924

        targets = xr.DataArray(csv["__target"], dims=["index"], name="Annotation")

        for key in csv:
            if key == "__target":
                continue
            targets = targets.assign_coords({key: ("index", csv[key])})

925
926
927
        for key in request["converters"]:
            if key in request["converters"]:
                converter = request["converters"][key]
matthmey's avatar
matthmey committed
928
929
930
931
932
933
934
935
            else:
                converter = lambda x: x
            if not callable(converter):
                raise RuntimeError("Please provide a callable as column converter")
            targets = targets.assign_coords({key: ("index", converter(targets[key]))})

        return targets

936
937

def check_overlap(data0, data1, sort_data0=True, sort_data1=True):
matthmey's avatar
matthmey committed
938
    if sort_data0:
939
        data0 = data0.sortby("time")
matthmey's avatar
matthmey committed
940
    if sort_data1:
941
        data1 = data1.sortby("time")
matthmey's avatar
matthmey committed
942
943
944
945
946
947

    # data0['start_time'] = pd.to_datetime(data0['start_time'],utc=True)
    # data0['end_time'] = pd.to_datetime(data0['end_time'],utc=True)
    # data1['start_time'] = pd.to_datetime(data1['start_time'],utc=True)
    # data1['end_time'] = pd.to_datetime(data1['end_time'],utc=True)

948
949
950
951
952
    data0_start_time = list(pd.to_datetime(data0["start_time"], utc=True))
    data0_end_time = list(pd.to_datetime(data0["end_time"], utc=True))
    data1_start_time = list(pd.to_datetime(data1["start_time"], utc=True))
    data1_end_time = list(pd.to_datetime(data1["end_time"], utc=True))

matthmey's avatar
matthmey committed
953
954
955
956
957
958
959
    overlap_indices = []
    # print(data0.head())
    num_overlaps = 0
    start_idx = 0
    for i in range(len(data0)):
        # data0_df = data0.iloc[i]
        data0_start = data0_start_time[i]
960
        data0_end = data0_end_time[i]
matthmey's avatar
matthmey committed
961
        # print(data0_df['start_time'])
962
        label = "no data"
matthmey's avatar
matthmey committed
963
        ext = []
964
        for j in range(start_idx, len(data1)):
matthmey's avatar
matthmey committed
965
966
            # data1_df = data1.iloc[j]
            data1_start = data1_start_time[j]
967
            data1_end = data1_end_time[j]
matthmey's avatar
matthmey committed
968
969
            # print(type(data0_df['end_time']),type(data1_df['start_time']))
            # check if data0_df is completly before data1_df, then all following items will also be non overlapping (sorted list data1)
970
            cond0 = data0_end < data1_start
matthmey's avatar
matthmey committed
971
972
973
974
975
976
977
            if cond0 == True:
                break

            # if data0_df['label'] != data1_df['label']:
            #     continue

            # second condition: data0_df is after data1_df, all items before data1_df can be ignored (sorted list data0)
978
            cond1 = data0_start > data1_end
matthmey's avatar
matthmey committed
979

980
            if cond1:
matthmey's avatar
matthmey committed
981
982
983
984
985
                start_idx = j

            if not (cond0 or cond1):
                # overlap
                num_overlaps += 1
986
987
                label = "data"
                overlap_indices.append([int(i), int(j)])
matthmey's avatar
matthmey committed
988
989
990
991

    return overlap_indices


992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
# from xbatcher: https://github.com/rabernat/xbatcher/
def _slices(dimsize, size, stride=None):
    # return a list of slices to chop up a single dimension
    slices = []
    assert stride < dimsize
    for start in range(0, dimsize, stride):  # TODO include hopsize/overlapping windows
        end = start + size
        if end <= dimsize:
            slices.append(slice(start, end))
    return slices


def get_slices(ds, dims, dataset_slice=None, stride={}):
    dim_slices = []
    for dim in dims:
        print(dim)
        print(ds.sizes)
        if dataset_slice is None:
            dimsize = slice(0, ds.sizes[dim])
        else:
            dimsize = dataset_slice[dim]
        size = dims[dim]
        print(size)
        _stride = stride.get(dim, size)
        dim_slices.append(_slices(dimsize, size, _stride))
    return dim_slices
    # for slices in itertools.product(*dim_slices):
    #     selector = {key: slice for key, slice in zip(dims, slices)}
    #     yield ds.isel(**selector)


class LabeledDataset(DataSource):
    def __init__(
        self, data, label, trim=True, dataset_slice=None, batch_dims={}, pad=False
    ):
matthmey's avatar
matthmey committed
1027

1028
1029
1030
        """ trim ... trim the dataset to the available labels
            dataset_slice: which part of the dataset to use
        """
matthmey's avatar
matthmey committed
1031
        # load annotation source and datasource
1032

matthmey's avatar
matthmey committed
1033
1034
1035
1036
        # define an dataset index containing all indices of the datasource (e.g. timestamps or time period) which should be in this dataset
        d = data()
        l = label()

1037
1038
1039
1040
1041
1042
1043
        # print(d['time'])
        # print(l['time'])

        d = d.sortby("time")
        l = l.sortby("time")

        # restrict it to the available labels
matthmey's avatar
matthmey committed
1044

1045
1046
1047
        # indices = check_overlap(d,l)
        slices = get_slices(d, batch_dims, dataset_slice=dataset_slice)
        print(slices)
matthmey's avatar
matthmey committed
1048
        exit()
1049
1050
        # TODO: get statistics to what was left out

matthmey's avatar
matthmey committed
1051
        # go through dataset index and and check overlap of datasource indices and annotation indices
1052

matthmey's avatar
matthmey committed
1053
1054
        # generate new annotation set with regards to the datasourceindices (requires to generate and empty annotation set add new labels to the it)
        # if wanted generate intermediate freeze results of datasource and annotations
1055
        # go through all items of the datasource
matthmey's avatar
matthmey committed
1056
1057
        pass

1058
    def forward(self, request=None):
matthmey's avatar
matthmey committed
1059
        pass
matthmey's avatar
matthmey committed
1060

1061

matthmey's avatar
matthmey committed
1062
class PytorchDataset(DataSource):  # TODO: extends pytorch dataset
1063
    def __init__(self, source=None):
matthmey's avatar
matthmey committed
1064
        """ Creates a pytorch like dataset from a data source and a label source.
1065
1066
1067
1068
1069
            
        Arguments:
            DataSource {[type]} -- [description]
            config {dict} -- configuration for labels
        """
1070
        super().__init__(source=source)
1071

matthmey's avatar
matthmey committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    def build_dataset(self):
        # load annotation source and datasource

        # define an dataset index containing all indices of the datasource (e.g. timestamps or time period) which should be in this dataset

        # go through dataset index and and check overlap of datasource indices and annotation indices

        # generate new annotation set with regards to the datasourceindices (requires to generate and empty annotation set add new labels to the it)

        # if wanted generate intermediate freeze results of datasource and annotations

        # go through all items of the datasource
        pass

1086
    def forward(self, request):
1087
1088

        return x