Skip to content
### Changes

- __Breaking__: in train, load model instead of weights when restarting
  - the argument `load_weights` is now `load_model`
  - the flag option in the cli `--load_weights` is now `--load_model`
- __Breaking__: implement class weights.
  - orcai_parameters.json now has a model.call_weights key.
    - to unbreak add `"call_weights": null` to the model section of orcai_parameters.json
  - Implemented "three" methods for calculating call weights:
    - `"balanced"` is the same heuristic as is used in sklearn (= total / (n_calls \* count)),
    - `"max"` is 1/count \* total,
    - `"uniform"` is all ones and equal to None.
    - Use `null` (in Json, `None` in python) to disable class weights.
- __Breaking__: switch to class based metrics
- __Breaking__: implement AUC ROC metric
- __Breaking__: making the choice of metric to monitor for callbacks an option in orcai_parameters.json
  - to unbreak add `"monitor": "val_MBA"` to the model section of orcai_parameters.json
- make ReduceLROnPlateau callback patience == model_parameters['patience'] // __3__
- define metrics in architectures.py
- new arg parameter to overwrite default orcai parameter on project init