# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import numpy as np import onnx # noqa import os import torch from brevitas.core.quant import QuantType from brevitas.core.scaling import ScalingImplType from brevitas.export import export_finn_onnx, export_qonnx from brevitas.nn import QuantReLU from qonnx.core.modelwrapper import ModelWrapper from qonnx.transformation.infer_shapes import InferShapes from qonnx.util.cleanup import cleanup as qonnx_cleanup import finn.core.onnx_exec as oxe from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN export_onnx_path = "test_brevitas_relu_act_export.onnx" @pytest.mark.brevitas_export @pytest.mark.parametrize("abits", [2, 4, 8]) @pytest.mark.parametrize("ishape", [(1, 15), (1, 32, 1, 1)]) @pytest.mark.parametrize( "scaling_impl_type", [ScalingImplType.CONST] # , ScalingImplType.PARAMETER] ) @pytest.mark.parametrize("scaling_per_output_channel", [True, False]) @pytest.mark.parametrize("per_channel_broadcastable_shape", [None, (1, 32, 1, 1)]) @pytest.mark.parametrize("QONNX_export", [False, True]) def test_brevitas_act_export_relu( abits, ishape, scaling_impl_type, scaling_per_output_channel, per_channel_broadcastable_shape, QONNX_export, ): b_act = QuantReLU( bit_width=abits, max_val=6.0, scaling_impl_type=scaling_impl_type, quant_type=QuantType.INT, scaling_per_output_channel=scaling_per_output_channel, per_channel_broadcastable_shape=per_channel_broadcastable_shape, ) if QONNX_export: m_path = export_onnx_path export_qonnx(b_act, torch.randn(ishape), m_path) qonnx_cleanup(m_path, out_file=m_path) model = ModelWrapper(m_path) model = model.transform(ConvertQONNXtoFINN()) model.save(m_path) else: export_finn_onnx(b_act, torch.randn(ishape), export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) inp_tensor = np.random.uniform(low=-1.0, high=6.0, size=ishape).astype(np.float32) idict = {model.graph.input[0].name: inp_tensor} odict = oxe.execute_onnx(model, idict, True) produced = odict[model.graph.output[0].name] inp_tensor = torch.from_numpy(inp_tensor).float() b_act.eval() expected = b_act.forward(inp_tensor).detach().numpy() assert np.isclose(produced, expected, atol=1e-3).all() os.remove(export_onnx_path)