# Copyright (c) 2022 Xilinx, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of Xilinx nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pkg_resources as pk import numpy as np from qonnx.custom_op.registry import getCustomOp import finn.builder.build_dataflow as build import finn.builder.build_dataflow_config as build_cfg from finn.analysis.fpgadataflow.dataflow_performance import dataflow_performance from finn.transformation.fpgadataflow.derive_characteristic import DeriveCharacteristic from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.util.basic import make_build_dir def custom_step_fifosize(model, cfg): # TODO convert to NodeLocalTransformation def accumulate_char_fxn(chrc): p = len(chrc) ret = [] for t in range(2 * p): if t == 0: ret.append(chrc[0]) else: ret.append(ret[-1] + chrc[t % p]) return ret # TODO handle chrc for input and output nodes all_act_tensors = [x.name for x in model.graph.value_info] for tensor_nm in all_act_tensors: # generate accumulated characteristic functions prod = getCustomOp(model.find_producer(tensor_nm)) prod_chrc = prod.get_nodeattr("io_characteristic") prod_chrc = np.asarray(prod_chrc, dtype=np.uint8).reshape(2, -1)[1] prod_chrc = accumulate_char_fxn(prod_chrc) cons = getCustomOp(model.find_consumer(tensor_nm)) cons_chrc = cons.get_nodeattr("io_characteristic") cons_chrc = np.asarray(cons_chrc, dtype=np.uint8).reshape(2, -1)[0] cons_chrc = accumulate_char_fxn(cons_chrc) # TODO find minimum phase shift for node in model.graph.node: inst = getCustomOp(node) chrc = inst.get_nodeattr("io_characteristic") chrc = np.asarray(chrc, dtype=np.uint8).reshape(2, -1) return model def custom_step_fifocharacterize(model, cfg): model = model.transform(PrepareRTLSim()) period = model.analysis(dataflow_performance)["max_cycles"] + 10 model = model.transform(DeriveCharacteristic(period)) return model def test_end2end_fifosizing(): chkpt_name = pk.resource_filename("finn.qnn-data", "build_dataflow/model.onnx") tmp_output_dir = make_build_dir("build_fifosizing_") # tmp_output_dir = "/tmp/finn_dev_maltanar/build_fifosizing_5mt0o6s_" steps = build_cfg.default_build_dataflow_steps steps = steps[:10] steps.append(custom_step_fifocharacterize) # steps.append(custom_step_fifosize) cfg = build_cfg.DataflowBuildConfig( output_dir=tmp_output_dir, auto_fifo_depths=False, target_fps=10000, synth_clk_period_ns=10.0, board="Pynq-Z1", shell_flow_type=build_cfg.ShellFlowType.VIVADO_ZYNQ, generate_outputs=[], steps=steps, default_mem_mode=build_cfg.ComputeEngineMemMode.CONST, start_step="custom_step_fifocharacterize", ) build.build_dataflow_cfg(chkpt_name, cfg)