# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import qonnx.core.data_layout as DataLayout from onnx import TensorProto, helper from qonnx.core.datatype import DataType from qonnx.core.modelwrapper import ModelWrapper from qonnx.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames from qonnx.transformation.infer_data_layouts import InferDataLayouts from qonnx.transformation.infer_datatypes import InferDataTypes from qonnx.transformation.infer_shapes import InferShapes from qonnx.transformation.insert_topk import InsertTopK from qonnx.util.basic import gen_finn_dt_tensor import finn.core.onnx_exec as oxe from finn.transformation.streamline.reorder import MoveFlattenPastTopK @pytest.mark.streamline # data layout @pytest.mark.parametrize("data_layout", [DataLayout.NHWC, DataLayout.NCHW]) # batch size @pytest.mark.parametrize("batch_size", [1, 2]) def test_move_flatten_past_topk(data_layout, batch_size): if data_layout == DataLayout.NHWC: ishape = [batch_size, 1, 1, 1024] oshape = [batch_size, 1024] else: ishape = [batch_size, 1024, 1, 1] oshape = [batch_size, 1024] inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape) flatten_node = helper.make_node("Flatten", ["inp"], ["outp"]) graph = helper.make_graph( nodes=[flatten_node], name="move-flatten-graph", inputs=[inp], outputs=[outp], ) model = helper.make_model(graph, producer_name="move_flatten_model") model = ModelWrapper(model) model.set_tensor_datatype("inp", DataType["INT2"]) model.set_tensor_layout("inp", data_layout) model = model.transform(InsertTopK()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) model = model.transform(InferDataLayouts()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) # compare execution before and after transformation inp_values = gen_finn_dt_tensor(DataType["INT2"], ishape) idict = {model.graph.input[0].name: inp_values} model_transformed = model.transform(MoveFlattenPastTopK()) assert oxe.compare_execution(model, model_transformed, idict) # depending on data layout check if graph is transformed or not if data_layout == DataLayout.NHWC: # check if nodes have new order in transformed graph assert model.graph != model_transformed.graph assert model_transformed.graph.node[-1].op_type == "Flatten" else: assert model.graph == model_transformed.graph