# Copyright (c) 2021, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import numpy as np import os import torch from brevitas.core.quant import QuantType from brevitas.export import export_finn_onnx, export_qonnx from brevitas.nn import QuantLinear from qonnx.core.datatype import DataType from qonnx.core.modelwrapper import ModelWrapper from qonnx.transformation.infer_shapes import InferShapes from qonnx.util.basic import gen_finn_dt_tensor from qonnx.util.cleanup import cleanup as qonnx_cleanup import finn.core.onnx_exec as oxe from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN export_onnx_path = "test_brevitas_qlinear.onnx" @pytest.mark.brevitas_export @pytest.mark.parametrize("bias", [False, True]) @pytest.mark.parametrize("out_features", [4]) @pytest.mark.parametrize("in_features", [3]) @pytest.mark.parametrize("w_bits", [4]) @pytest.mark.parametrize("i_dtype", [DataType["UINT4"]]) @pytest.mark.parametrize("QONNX_export", [False, True]) def test_brevitas_qlinear( bias, out_features, in_features, w_bits, i_dtype, QONNX_export ): i_shape = (1, in_features) w_shape = (out_features, in_features) b_linear = QuantLinear( out_features=out_features, in_features=in_features, bias=bias, bias_quant_type=QuantType.FP, weight_bit_width=w_bits, weight_quant_type=QuantType.INT, weight_scaling_per_output_channel=True, ) weight_tensor_fp = np.random.uniform(low=-1.0, high=1.0, size=w_shape).astype( np.float32 ) b_linear.weight.data = torch.from_numpy(weight_tensor_fp) b_linear.eval() if QONNX_export: m_path = export_onnx_path export_qonnx(b_linear, torch.randn(i_shape), m_path) qonnx_cleanup(m_path, out_file=m_path) model = ModelWrapper(m_path) model = model.transform(ConvertQONNXtoFINN()) model.save(m_path) else: export_finn_onnx(b_linear, torch.randn(i_shape), export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) inp_tensor = gen_finn_dt_tensor(i_dtype, i_shape) idict = {model.graph.input[0].name: inp_tensor} odict = oxe.execute_onnx(model, idict, True) produced = odict[model.graph.output[0].name] inp_tensor = torch.from_numpy(inp_tensor).float() expected = b_linear.forward(inp_tensor).detach().numpy() assert np.isclose(produced, expected, atol=1e-3).all() os.remove(export_onnx_path)