# Copyright (c) 2020, Xilinx
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of FINN nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy as np
import onnx.helper as oh
from onnx import TensorProto

import finn.core.onnx_exec as ox
from finn.core.modelwrapper import ModelWrapper
from finn.transformation.infer_shapes import InferShapes
from finn.transformation.streamline import MoveAddPastMul


def test_move_add_past_mul_single():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [2])
    mul_param = oh.make_tensor_value_info("mul_param", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param, mul_param],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param"], ["middle"]),
                oh.make_node("Mul", ["middle", "mul_param"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    model.set_initializer("add_param", np.asarray([1, 3], dtype=np.float32))
    model.set_initializer("mul_param", np.asarray([2, 4], dtype=np.float32))
    new_model = model.transform(MoveAddPastMul())
    inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)}
    assert ox.compare_execution(model, new_model, inp_dict)
    assert new_model.graph.node[0].op_type == "Mul"
    assert new_model.graph.node[1].op_type == "Add"
    assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0]


def test_move_add_past_mul_multi():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    add_param_0 = oh.make_tensor_value_info("add_param_0", TensorProto.FLOAT, [2])
    mul_param_0 = oh.make_tensor_value_info("mul_param_0", TensorProto.FLOAT, [2])
    add_param_1 = oh.make_tensor_value_info("add_param_1", TensorProto.FLOAT, [2])
    mul_param_1 = oh.make_tensor_value_info("mul_param_1", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=[add_param_0, mul_param_0, add_param_1, mul_param_1],
            nodes=[
                oh.make_node("Add", ["top_in", "add_param_0"], ["middle_0"]),
                oh.make_node("Mul", ["middle_0", "mul_param_0"], ["middle_1"]),
                oh.make_node("Add", ["middle_1", "add_param_1"], ["middle_2"]),
                oh.make_node("Mul", ["middle_2", "mul_param_1"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())
    model.set_initializer("add_param_0", np.asarray([1, 3], dtype=np.float32))
    model.set_initializer("mul_param_0", np.asarray([2, 4], dtype=np.float32))
    model.set_initializer("add_param_1", np.asarray([-1, 3], dtype=np.float32))
    model.set_initializer("mul_param_1", np.asarray([2, -4], dtype=np.float32))
    new_model = model.transform(MoveAddPastMul())
    inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)}
    assert ox.compare_execution(model, new_model, inp_dict)
    assert new_model.graph.node[0].op_type == "Mul"
    assert new_model.graph.node[1].op_type == "Mul"
    assert new_model.graph.node[2].op_type == "Add"
    assert new_model.graph.node[3].op_type == "Add"
    for i in range(len(new_model.graph.node) - 1):
        assert new_model.graph.node[i].output[0] == new_model.graph.node[i + 1].input[0]


def test_move_add_past_mul_only_if_linear():
    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])

    value_info = [oh.make_tensor_value_info("add1_param", TensorProto.FLOAT, [1])]
    value_info += [oh.make_tensor_value_info("mul1_param", TensorProto.FLOAT, [1])]
    value_info += [oh.make_tensor_value_info("mul2_param", TensorProto.FLOAT, [1])]
    value_info += [oh.make_tensor_value_info("mul3_param", TensorProto.FLOAT, [1])]
    modelproto = oh.make_model(
        oh.make_graph(
            name="test",
            inputs=[top_in],
            outputs=[top_out],
            value_info=value_info,
            nodes=[
                oh.make_node("Add", ["top_in", "add1_param"], ["t1"]),
                oh.make_node("Mul", ["t1", "mul1_param"], ["fork"]),
                oh.make_node("Mul", ["fork", "mul2_param"], ["t3"]),
                oh.make_node("Add", ["t3", "fork"], ["t4"]),
                oh.make_node("Mul", ["t4", "mul3_param"], ["top_out"]),
            ],
        )
    )
    model = ModelWrapper(modelproto)
    model = model.transform(InferShapes())

    np.random.seed(0)
    model.set_initializer("add1_param", np.random.rand(2).astype(np.float32))
    model.set_initializer("mul1_param", np.random.rand(2).astype(np.float32))
    model.set_initializer("mul2_param", np.random.rand(2).astype(np.float32))
    model.set_initializer("mul3_param", np.random.rand(2).astype(np.float32))
    new_model = model.transform(MoveAddPastMul())
    inp_dict = {"top_in": np.random.rand(2).astype(np.float32)}
    assert ox.compare_execution(model, new_model, inp_dict)
    assert new_model.graph.node[0].op_type == "Mul"
    assert new_model.graph.node[1].op_type == "Add"
    assert new_model.graph.node[2].op_type == "Mul"
    assert new_model.graph.node[3].op_type == "Add"
    assert new_model.graph.node[4].op_type == "Mul"