# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import onnx.helper as oh from onnx import TensorProto import finn.core.onnx_exec as ox from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import MoveAddPastMul def test_move_add_past_mul_single(): top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2]) add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [2]) mul_param = oh.make_tensor_value_info("mul_param", TensorProto.FLOAT, [2]) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2]) modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=[add_param, mul_param], nodes=[ oh.make_node("Add", ["top_in", "add_param"], ["middle"]), oh.make_node("Mul", ["middle", "mul_param"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) model.set_initializer("add_param", np.asarray([1, 3], dtype=np.float32)) model.set_initializer("mul_param", np.asarray([2, 4], dtype=np.float32)) new_model = model.transform(MoveAddPastMul()) inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "Mul" assert new_model.graph.node[1].op_type == "Add" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] def test_move_add_past_mul_multi(): top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2]) add_param_0 = oh.make_tensor_value_info("add_param_0", TensorProto.FLOAT, [2]) mul_param_0 = oh.make_tensor_value_info("mul_param_0", TensorProto.FLOAT, [2]) add_param_1 = oh.make_tensor_value_info("add_param_1", TensorProto.FLOAT, [2]) mul_param_1 = oh.make_tensor_value_info("mul_param_1", TensorProto.FLOAT, [2]) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2]) modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=[add_param_0, mul_param_0, add_param_1, mul_param_1], nodes=[ oh.make_node("Add", ["top_in", "add_param_0"], ["middle_0"]), oh.make_node("Mul", ["middle_0", "mul_param_0"], ["middle_1"]), oh.make_node("Add", ["middle_1", "add_param_1"], ["middle_2"]), oh.make_node("Mul", ["middle_2", "mul_param_1"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) model.set_initializer("add_param_0", np.asarray([1, 3], dtype=np.float32)) model.set_initializer("mul_param_0", np.asarray([2, 4], dtype=np.float32)) model.set_initializer("add_param_1", np.asarray([-1, 3], dtype=np.float32)) model.set_initializer("mul_param_1", np.asarray([2, -4], dtype=np.float32)) new_model = model.transform(MoveAddPastMul()) inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "Mul" assert new_model.graph.node[1].op_type == "Mul" assert new_model.graph.node[2].op_type == "Add" assert new_model.graph.node[3].op_type == "Add" for i in range(len(new_model.graph.node) - 1): assert new_model.graph.node[i].output[0] == new_model.graph.node[i + 1].input[0] def test_move_add_past_mul_only_if_linear(): top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2]) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2]) value_info = [oh.make_tensor_value_info("add1_param", TensorProto.FLOAT, [1])] value_info += [oh.make_tensor_value_info("mul1_param", TensorProto.FLOAT, [1])] value_info += [oh.make_tensor_value_info("mul2_param", TensorProto.FLOAT, [1])] value_info += [oh.make_tensor_value_info("mul3_param", TensorProto.FLOAT, [1])] modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=value_info, nodes=[ oh.make_node("Add", ["top_in", "add1_param"], ["t1"]), oh.make_node("Mul", ["t1", "mul1_param"], ["fork"]), oh.make_node("Mul", ["fork", "mul2_param"], ["t3"]), oh.make_node("Add", ["t3", "fork"], ["t4"]), oh.make_node("Mul", ["t4", "mul3_param"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) np.random.seed(0) model.set_initializer("add1_param", np.random.rand(2).astype(np.float32)) model.set_initializer("mul1_param", np.random.rand(2).astype(np.float32)) model.set_initializer("mul2_param", np.random.rand(2).astype(np.float32)) model.set_initializer("mul3_param", np.random.rand(2).astype(np.float32)) new_model = model.transform(MoveAddPastMul()) inp_dict = {"top_in": np.random.rand(2).astype(np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "Mul" assert new_model.graph.node[1].op_type == "Add" assert new_model.graph.node[2].op_type == "Mul" assert new_model.graph.node[3].op_type == "Add" assert new_model.graph.node[4].op_type == "Mul"