# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import pytest import numpy as np from onnx import TensorProto, helper from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.core.onnx_exec import execute_onnx from finn.custom_op.registry import getCustomOp from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.create_stitched_ip import CreateStitchedIP from finn.transformation.fpgadataflow.create_dataflow_partition import ( CreateDataflowPartition, ) from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.insert_tlastmarker import InsertTLastMarker from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver from finn.transformation.fpgadataflow.make_pynq_proj import MakePYNQProject from finn.transformation.fpgadataflow.synth_pynq_proj import SynthPYNQProject import finn.transformation.fpgadataflow.replace_verilog_relpaths as rvp from finn.transformation.general import GiveUniqueNodeNames from finn.util.basic import ( gen_finn_dt_tensor, pynq_part_map, alveo_part_map, alveo_default_platform, ) from finn.util.fpgadataflow import pyverilate_stitched_ip from finn.util.test import load_test_checkpoint_or_skip from finn.transformation.fpgadataflow.synth_ooc import SynthOutOfContext from finn.transformation.infer_data_layouts import InferDataLayouts from finn.transformation.fpgadataflow.insert_iodma import InsertIODMA from finn.transformation.fpgadataflow.floorplan import Floorplan from finn.transformation.fpgadataflow.vitis_build import VitisBuild test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") test_fpga_part = pynq_part_map[test_pynq_board] ip_stitch_model_dir = "/tmp/" + os.environ["FINN_INST_NAME"] def create_one_fc_model(): # create a model with a StreamingFCLayer instance with no activation # the wider range of the full accumulator makes debugging a bit easier wdt = DataType.INT2 idt = DataType.INT32 odt = DataType.INT32 m = 4 no_act = 1 binary_xnor_mode = 0 actval = 0 simd = 4 pe = 4 inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, m]) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, m]) fc0 = helper.make_node( "StreamingFCLayer_Batch", ["inp", "w0"], ["outp"], domain="finn", backend="fpgadataflow", resType="ap_resource_lut()", MW=m, MH=m, SIMD=simd, PE=pe, inputDataType=idt.name, weightDataType=wdt.name, outputDataType=odt.name, ActVal=actval, binaryXnorMode=binary_xnor_mode, noActivation=no_act, ) graph = helper.make_graph( nodes=[fc0], name="fclayer_graph", inputs=[inp], outputs=[outp] ) model = helper.make_model(graph, producer_name="fclayer-model") model = ModelWrapper(model) model.set_tensor_datatype("inp", idt) model.set_tensor_datatype("outp", odt) model.set_tensor_datatype("w0", wdt) # generate weights w0 = np.eye(m, dtype=np.float32) model.set_initializer("w0", w0) model = model.transform(CreateDataflowPartition()) return model def create_two_fc_model(mem_mode="decoupled"): # create a model with two StreamingFCLayer instances wdt = DataType.INT2 idt = DataType.INT32 odt = DataType.INT32 m = 4 actval = 0 no_act = 1 binary_xnor_mode = 0 pe = 2 simd = 2 inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, m]) mid = helper.make_tensor_value_info("mid", TensorProto.FLOAT, [1, m]) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, m]) fc0 = helper.make_node( "StreamingFCLayer_Batch", ["inp", "w0"], ["mid"], domain="finn", backend="fpgadataflow", resType="ap_resource_lut()", MW=m, MH=m, SIMD=simd, PE=pe, inputDataType=idt.name, weightDataType=wdt.name, outputDataType=odt.name, ActVal=actval, binaryXnorMode=binary_xnor_mode, noActivation=no_act, mem_mode=mem_mode, ) fc1 = helper.make_node( "StreamingFCLayer_Batch", ["mid", "w1"], ["outp"], domain="finn", backend="fpgadataflow", resType="ap_resource_lut()", MW=m, MH=m, SIMD=simd, PE=pe, inputDataType=idt.name, weightDataType=wdt.name, outputDataType=odt.name, ActVal=actval, binaryXnorMode=binary_xnor_mode, noActivation=no_act, mem_mode=mem_mode, ) graph = helper.make_graph( nodes=[fc0, fc1], name="fclayer_graph", inputs=[inp], outputs=[outp], value_info=[mid], ) model = helper.make_model(graph, producer_name="fclayer-model") model = ModelWrapper(model) model.set_tensor_datatype("inp", idt) model.set_tensor_datatype("mid", idt) model.set_tensor_datatype("outp", odt) model.set_tensor_datatype("w0", wdt) model.set_tensor_datatype("w1", wdt) # generate weights w0 = np.eye(m, dtype=np.float32) w1 = np.eye(m, dtype=np.float32) model.set_initializer("w0", w0) model.set_initializer("w1", w1) model = model.transform(CreateDataflowPartition()) return model # exec_mode of StreamingDataflowPartition # @pytest.mark.parametrize("exec_mode", ["remote_pynq"]) #, "rtlsim"]) @pytest.mark.vivado def test_fpgadataflow_ipstitch_gen_model(): # exec_mode): model = create_one_fc_model() if model.graph.node[0].op_type == "StreamingDataflowPartition": sdp_node = getCustomOp(model.graph.node[0]) assert sdp_node.__class__.__name__ == "StreamingDataflowPartition" assert os.path.isfile(sdp_node.get_nodeattr("model")) model = load_test_checkpoint_or_skip(sdp_node.get_nodeattr("model")) model.set_metadata_prop("exec_mode", "remote_pynq") model = model.transform(InsertTLastMarker()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP(test_fpga_part, 5)) model = model.transform(HLSSynthIP()) assert model.graph.node[0].op_type == "StreamingFCLayer_Batch" assert model.graph.node[-1].op_type == "TLastMarker" model.save(ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_gen_model.onnx") @pytest.mark.vivado def test_fpgadataflow_ipstitch_do_stitch(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_gen_model.onnx" ) model = model.transform(rvp.ReplaceVerilogRelPaths()) model = model.transform(CreateStitchedIP(test_fpga_part, 5)) vivado_stitch_proj_dir = model.get_metadata_prop("vivado_stitch_proj") assert vivado_stitch_proj_dir is not None assert os.path.isdir(vivado_stitch_proj_dir) assert os.path.isfile(vivado_stitch_proj_dir + "/ip/component.xml") vivado_stitch_vlnv = model.get_metadata_prop("vivado_stitch_vlnv") assert vivado_stitch_vlnv is not None assert vivado_stitch_vlnv == "xilinx_finn:finn:finn_design:1.0" model.save(ip_stitch_model_dir + "/test_fpgadataflow_ip_stitch.onnx") @pytest.mark.vivado def test_fpgadataflow_ipstitch_rtlsim(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ip_stitch.onnx" ) model.set_metadata_prop("rtlsim_trace", "whole_trace.vcd") sim = pyverilate_stitched_ip(model) exp_io = [ "ap_clk", "ap_rst_n", "s_axis_0_tdata", "s_axis_0_tready", "s_axis_0_tvalid", "m_axis_0_tdata", "m_axis_0_tkeep", "m_axis_0_tlast", "m_axis_0_tready", "m_axis_0_tvalid", "s_axi_control_araddr", "s_axi_control_arready", "s_axi_control_arvalid", "s_axi_control_awaddr", "s_axi_control_awready", "s_axi_control_awvalid", "s_axi_control_bready", "s_axi_control_bresp", "s_axi_control_bvalid", "s_axi_control_rdata", "s_axi_control_rready", "s_axi_control_rresp", "s_axi_control_rvalid", "s_axi_control_wdata", "s_axi_control_wready", "s_axi_control_wstrb", "s_axi_control_wvalid", ] assert sorted(dir(sim.io)) == sorted(exp_io) model.set_metadata_prop("exec_mode", "rtlsim") idt = model.get_tensor_datatype("inp") ishape = model.get_tensor_shape("inp") x = gen_finn_dt_tensor(idt, ishape) # x = np.zeros(ishape, dtype=np.float32) # x = np.asarray([[-2, -1, 0, 1]], dtype=np.float32) rtlsim_res = execute_onnx(model, {"inp": x})["outp"] assert (rtlsim_res == x).all() @pytest.mark.vivado @pytest.mark.slow def test_fpgadataflow_ipstitch_synth_ooc(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ip_stitch.onnx" ) model = model.transform(SynthOutOfContext(test_fpga_part, 5)) ret = model.get_metadata_prop("res_total_ooc_synth") assert ret is not None # example expected output: (details may differ based on Vivado version etc) # "{'vivado_proj_folder': ..., # 'LUT': 708.0, 'FF': 1516.0, 'DSP': 0.0, 'BRAM': 0.0, 'WNS': 0.152, '': 0, # 'fmax_mhz': 206.27062706270627}" ret = eval(ret) assert ret["LUT"] > 0 assert ret["FF"] > 0 assert ret["DSP"] == 0 assert ret["BRAM"] == 0 assert ret["fmax_mhz"] > 100 @pytest.mark.vivado def test_fpgadataflow_ipstitch_pynq_projgen(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ip_stitch.onnx" ) model = model.transform(MakePYNQProject(test_pynq_board)) vivado_pynq_proj_dir = model.get_metadata_prop("vivado_pynq_proj") assert vivado_pynq_proj_dir is not None assert os.path.isdir(vivado_pynq_proj_dir) model.save(ip_stitch_model_dir + "/test_fpgadataflow_pynq_projgen.onnx") @pytest.mark.slow @pytest.mark.vivado def test_fpgadataflow_ipstitch_pynq_synth(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_pynq_projgen.onnx" ) model = model.transform(SynthPYNQProject()) bitfile = model.get_metadata_prop("vivado_pynq_bitfile") assert bitfile is not None assert os.path.isfile(bitfile) model.save(ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_synth.onnx") def test_fpgadataflow_ipstitch_pynq_driver(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_synth.onnx" ) model = model.transform(MakePYNQDriver()) driver_dir = model.get_metadata_prop("pynq_driver_dir") assert driver_dir is not None assert os.path.isdir(driver_dir) model.save(ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_driver.onnx") def test_fpgadataflow_ipstitch_pynq_deployment_folder(): model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_driver.onnx" ) try: ip = os.environ["PYNQ_IP"] # no default for this one; skip if not defined if ip == "": pytest.skip("PYNQ board IP address not specified") username = os.getenv("PYNQ_USERNAME", "xilinx") password = os.getenv("PYNQ_PASSWORD", "xilinx") port = os.getenv("PYNQ_PORT", 22) target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn") model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir)) pynq_ip = model.get_metadata_prop("pynq_ip") pynq_username = model.get_metadata_prop("pynq_username") pynq_password = model.get_metadata_prop("pynq_password") pynq_target_dir = model.get_metadata_prop("pynq_target_dir") assert pynq_ip == ip assert pynq_username == username assert pynq_password == password assert pynq_target_dir == target_dir deployment_dir = model.get_metadata_prop("pynq_deploy_dir") assert deployment_dir is not None assert os.path.isdir(deployment_dir) model.save( ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_deployment.onnx" ) except KeyError: pytest.skip("PYNQ board IP address not specified") def test_fpgadataflow_ipstitch_remote_execution(): try: ip = os.environ["PYNQ_IP"] # NOQA if ip == "": pytest.skip("PYNQ board IP address not specified") model = load_test_checkpoint_or_skip( ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_deployment.onnx" ) iname = "inp" idt = model.get_tensor_datatype(iname) ishape = model.get_tensor_shape(iname) x = gen_finn_dt_tensor(idt, ishape) input_dict = {"inp": x} outp = execute_onnx(model, input_dict) assert np.isclose(outp["outp"], x).all() except KeyError: pytest.skip("PYNQ board IP address not specified") def test_fpgadataflow_ipstitch_iodma_floorplan(): model = create_one_fc_model() if model.graph.node[0].op_type == "StreamingDataflowPartition": sdp_node = getCustomOp(model.graph.node[0]) assert sdp_node.__class__.__name__ == "StreamingDataflowPartition" assert os.path.isfile(sdp_node.get_nodeattr("model")) model = load_test_checkpoint_or_skip(sdp_node.get_nodeattr("model")) model = model.transform(InferDataLayouts()) model = model.transform(InsertIODMA()) model = model.transform(Floorplan()) assert getCustomOp(model.graph.node[0]).get_nodeattr("partition_id") == 0 assert getCustomOp(model.graph.node[1]).get_nodeattr("partition_id") == 2 assert getCustomOp(model.graph.node[2]).get_nodeattr("partition_id") == 1 model.save(ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_iodma_floorplan.onnx") # board @pytest.mark.parametrize("board", ["U250"]) # clock period @pytest.mark.parametrize("period_ns", [5]) # override mem_mode to external @pytest.mark.parametrize("extw", [True, False]) @pytest.mark.slow @pytest.mark.vivado @pytest.mark.vitis def test_fpgadataflow_ipstitch_vitis(board, period_ns, extw): platform = alveo_default_platform[board] fpga_part = alveo_part_map[board] model = create_two_fc_model("external" if extw else "decoupled") if model.graph.node[0].op_type == "StreamingDataflowPartition": sdp_node = getCustomOp(model.graph.node[0]) assert sdp_node.__class__.__name__ == "StreamingDataflowPartition" assert os.path.isfile(sdp_node.get_nodeattr("model")) model = load_test_checkpoint_or_skip(sdp_node.get_nodeattr("model")) model = model.transform(VitisBuild(fpga_part, period_ns, platform)) model.save(ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_vitis.onnx")