# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import pytest import onnx.helper as oh from onnx import TensorProto import finn.core.onnx_exec as ox from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import ( MoveScalarAddPastMatMul, MoveScalarMulPastMatMul, ) def test_move_scalar_mul_past_matmul(): top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [1, 2]) mul_param = oh.make_tensor_value_info("mul_param", TensorProto.FLOAT, [1, 1]) matmul_param = oh.make_tensor_value_info("matmul_param", TensorProto.FLOAT, [2, 2]) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [1, 2]) modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=[mul_param, matmul_param], nodes=[ oh.make_node("Mul", ["top_in", "mul_param"], ["middle"]), oh.make_node("MatMul", ["middle", "matmul_param"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) model.set_initializer("mul_param", np.asarray([[3]], dtype=np.float32)) model.set_initializer( "matmul_param", np.asarray([[2, 4], [-1, 1]], dtype=np.float32) ) new_model = model.transform(MoveScalarMulPastMatMul()) inp_dict = {"top_in": np.asarray([[-1.0, 1.0]], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == "Mul" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] def test_move_scalar_add_past_matmul(): top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [1, 2]) add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [1, 1]) matmul_param = oh.make_tensor_value_info("matmul_param", TensorProto.FLOAT, [2, 2]) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [1, 2]) modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=[add_param, matmul_param], nodes=[ oh.make_node("Add", ["top_in", "add_param"], ["middle"]), oh.make_node("MatMul", ["middle", "matmul_param"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) model.set_initializer("add_param", np.asarray([[3]], dtype=np.float32)) model.set_initializer( "matmul_param", np.asarray([[2, 4], [-1, 1]], dtype=np.float32) ) new_model = model.transform(MoveScalarAddPastMatMul()) inp_dict = {"top_in": np.asarray([[-1.0, 1.0]], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == "Add" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] @pytest.mark.parametrize( "test_args", [("Add", MoveScalarAddPastMatMul()), ("Mul", MoveScalarMulPastMatMul())], ) def test_move_scalar_past_matmul_only_if_linear(test_args): scalar_op = test_args[0] transf_fxn = test_args[1] input_shape = [1, 2] matmul_shape = [2, 2] top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape) p1 = oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1, 1]) p2 = oh.make_tensor_value_info("p2", TensorProto.FLOAT, matmul_shape) p3 = oh.make_tensor_value_info("p3", TensorProto.FLOAT, matmul_shape) p4 = oh.make_tensor_value_info("p4", TensorProto.FLOAT, matmul_shape) modelproto = oh.make_model( oh.make_graph( name="test", inputs=[top_in], outputs=[top_out], value_info=[p1, p2, p3, p4], nodes=[ oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]), oh.make_node("MatMul", ["t1", "p2"], ["fork"]), oh.make_node("MatMul", ["fork", "p3"], ["t3"]), oh.make_node(scalar_op, ["t3", "fork"], ["t4"]), oh.make_node("MatMul", ["t4", "p4"], ["top_out"]), ], ) ) model = ModelWrapper(modelproto) model = model.transform(InferShapes()) np.random.seed(0) model.set_initializer("p1", np.random.rand(1, 1).astype(np.float32)) model.set_initializer("p2", np.random.rand(*matmul_shape).astype(np.float32)) model.set_initializer("p3", np.random.rand(*matmul_shape).astype(np.float32)) model.set_initializer("p4", np.random.rand(*matmul_shape).astype(np.float32)) # Transform new_model = model.transform(transf_fxn) # Test inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} assert ox.compare_execution(model, new_model, inp_dict) assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == scalar_op assert new_model.graph.node[2].op_type == "MatMul" assert new_model.graph.node[3].op_type == scalar_op assert new_model.graph.node[4].op_type == "MatMul"