# Copyright (c) 2021, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import torch from brevitas.nn import QuantLinear, QuantReLU from brevitas.quant_tensor import QuantTensor import torch.nn as nn import numpy as np from brevitas.core.quant import QuantType from brevitas.nn import QuantIdentity import brevitas.onnx as bo from finn.core.modelwrapper import ModelWrapper from finn.core.datatype import DataType import finn.builder.build_dataflow as build import finn.builder.build_dataflow_config as build_cfg import os import shutil from finn.util.test import get_build_env, load_test_checkpoint_or_skip import pytest from finn.util.basic import make_build_dir import pkg_resources as pk import json import wget import subprocess target_clk_ns = 10 build_kind = "zynq" build_dir = os.environ["FINN_BUILD_DIR"] def get_checkpoint_name(step): if step == "build": # checkpoint for build step is an entire dir return build_dir + "/end2end_cybsecmlp_build" else: # other checkpoints are onnx files return build_dir + "/end2end_cybsecmlp_%s.onnx" % (step) class CybSecMLPForExport(nn.Module): def __init__(self, my_pretrained_model): super(CybSecMLPForExport, self).__init__() self.pretrained = my_pretrained_model self.qnt_output = QuantIdentity( quant_type=QuantType.BINARY, bit_width=1, min_val=-1.0, max_val=1.0 ) def forward(self, x): # assume x contains bipolar {-1,1} elems # shift from {-1,1} -> {0,1} since that is the # input range for the trained network x = (x + torch.tensor([1.0])) / 2.0 out_original = self.pretrained(x) out_final = self.qnt_output(out_original) # output as {-1,1} return out_final def test_end2end_cybsec_mlp_export(): assets_dir = pk.resource_filename("finn.qnn-data", "cybsec-mlp/") # load up trained net in Brevitas input_size = 593 hidden1 = 64 hidden2 = 64 hidden3 = 64 weight_bit_width = 2 act_bit_width = 2 num_classes = 1 model = nn.Sequential( QuantLinear(input_size, hidden1, bias=True, weight_bit_width=weight_bit_width), nn.BatchNorm1d(hidden1), nn.Dropout(0.5), QuantReLU(bit_width=act_bit_width), QuantLinear(hidden1, hidden2, bias=True, weight_bit_width=weight_bit_width), nn.BatchNorm1d(hidden2), nn.Dropout(0.5), QuantReLU(bit_width=act_bit_width), QuantLinear(hidden2, hidden3, bias=True, weight_bit_width=weight_bit_width), nn.BatchNorm1d(hidden3), nn.Dropout(0.5), QuantReLU(bit_width=act_bit_width), QuantLinear(hidden3, num_classes, bias=True, weight_bit_width=weight_bit_width), ) trained_state_dict = torch.load(assets_dir + "/state_dict.pth")[ "models_state_dict" ][0] model.load_state_dict(trained_state_dict, strict=False) W_orig = model[0].weight.data.detach().numpy() # pad the second (593-sized) dimensions with 7 zeroes at the end W_new = np.pad(W_orig, [(0, 0), (0, 7)]) model[0].weight.data = torch.from_numpy(W_new) model_for_export = CybSecMLPForExport(model) export_onnx_path = get_checkpoint_name("export") input_shape = (1, 600) # create a QuantTensor instance to mark the input as bipolar during export input_a = np.random.randint(0, 1, size=input_shape).astype(np.float32) input_a = 2 * input_a - 1 scale = 1.0 input_t = torch.from_numpy(input_a * scale) input_qt = QuantTensor( input_t, scale=torch.tensor(scale), bit_width=torch.tensor(1.0), signed=True ) bo.export_finn_onnx( model_for_export, export_path=export_onnx_path, input_t=input_qt ) assert os.path.isfile(export_onnx_path) # fix input datatype finn_model = ModelWrapper(export_onnx_path) finnonnx_in_tensor_name = finn_model.graph.input[0].name assert tuple(finn_model.get_tensor_shape(finnonnx_in_tensor_name)) == (1, 600) # verify a few exported ops assert finn_model.graph.node[1].op_type == "Add" assert finn_model.graph.node[2].op_type == "Div" assert finn_model.graph.node[3].op_type == "MatMul" assert finn_model.graph.node[-1].op_type == "MultiThreshold" # verify datatypes on some tensors assert finn_model.get_tensor_datatype(finnonnx_in_tensor_name) == DataType.BIPOLAR first_matmul_w_name = finn_model.graph.node[3].input[1] assert finn_model.get_tensor_datatype(first_matmul_w_name) == DataType.INT2 @pytest.mark.slow @pytest.mark.vivado def test_end2end_cybsec_mlp_build(): model_file = get_checkpoint_name("export") load_test_checkpoint_or_skip(model_file) build_env = get_build_env(build_kind, target_clk_ns) output_dir = make_build_dir("test_end2end_cybsec_mlp_build") cfg = build.DataflowBuildConfig( output_dir=output_dir, target_fps=1000000, synth_clk_period_ns=target_clk_ns, board=build_env["board"], shell_flow_type=build_cfg.ShellFlowType.VIVADO_ZYNQ, generate_outputs=[ build_cfg.DataflowOutputType.ESTIMATE_REPORTS, build_cfg.DataflowOutputType.BITFILE, build_cfg.DataflowOutputType.PYNQ_DRIVER, build_cfg.DataflowOutputType.DEPLOYMENT_PACKAGE, ], ) build.build_dataflow_cfg(model_file, cfg) # check the generated files assert os.path.isfile(output_dir + "/time_per_step.json") assert os.path.isfile(output_dir + "/final_hw_config.json") assert os.path.isfile(output_dir + "/driver/driver.py") est_cycles_report = output_dir + "/report/estimate_layer_cycles.json" assert os.path.isfile(est_cycles_report) est_res_report = output_dir + "/report/estimate_layer_resources.json" assert os.path.isfile(est_res_report) assert os.path.isfile(output_dir + "/report/estimate_network_performance.json") assert os.path.isfile(output_dir + "/bitfile/finn-accel.bit") assert os.path.isfile(output_dir + "/bitfile/finn-accel.hwh") assert os.path.isfile(output_dir + "/report/post_synth_resources.xml") assert os.path.isfile(output_dir + "/report/post_route_timing.rpt") # examine the report contents with open(est_cycles_report, "r") as f: est_cycles_dict = json.load(f) assert est_cycles_dict["StreamingFCLayer_Batch_0"] == 80 assert est_cycles_dict["StreamingFCLayer_Batch_1"] == 64 with open(est_res_report, "r") as f: est_res_dict = json.load(f) assert est_res_dict["total"]["LUT"] == 11360.0 assert est_res_dict["total"]["BRAM_18K"] == 36.0 shutil.copytree(output_dir + "/deploy", get_checkpoint_name("build")) def test_end2end_cybsec_mlp_run_on_hw(): build_env = get_build_env(build_kind, target_clk_ns) assets_dir = pk.resource_filename("finn.qnn-data", "cybsec-mlp/") deploy_dir = get_checkpoint_name("build") if not os.path.isdir(deploy_dir): pytest.skip(deploy_dir + " not found from previous test step, skipping") driver_dir = deploy_dir + "/driver" assert os.path.isdir(driver_dir) # put all assets into driver dir shutil.copy(assets_dir + "/validate-unsw-nb15.py", driver_dir) # put a copy of binarized dataset into driver dir dataset_url = ( "https://zenodo.org/record/4519767/files/unsw_nb15_binarized.npz?download=1" ) dataset_local = driver_dir + "/unsw_nb15_binarized.npz" if not os.path.isfile(dataset_local): wget.download(dataset_url, out=dataset_local) assert os.path.isfile(dataset_local) # create a shell script for running validation: 10 batches x 10 imgs with open(driver_dir + "/validate.sh", "w") as f: f.write( """#!/bin/bash cd %s/driver echo %s | sudo -S python3.6 validate-unsw-nb15.py --batchsize=10 --limit_batches=10 """ % ( build_env["target_dir"] + "/end2end_cybsecmlp_build", build_env["password"], ) ) # set up rsync command remote_target = "%s@%s:%s" % ( build_env["username"], build_env["ip"], build_env["target_dir"], ) rsync_res = subprocess.run(["rsync", "-avz", deploy_dir, remote_target]) assert rsync_res.returncode == 0 remote_verif_cmd = [ "ssh", "%s@%s" % (build_env["username"], build_env["ip"]), "sh", build_env["target_dir"] + "/end2end_cybsecmlp_build/driver/validate.sh", ] verif_res = subprocess.run( remote_verif_cmd, stdout=subprocess.PIPE, universal_newlines=True, input=build_env["password"], ) assert verif_res.returncode == 0 log_output = verif_res.stdout.split("\n") assert log_output[-3] == "batch 10 / 10 : total OK 93 NOK 7" assert log_output[-2] == "Final accuracy: 93.000000"