import onnx from finn.util.test import get_test_model_trained import brevitas.onnx as bo import numpy as np import onnx.numpy_helper as nph import torch from finn.core.modelwrapper import ModelWrapper from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames from finn.transformation.infer_shapes import InferShapes from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.fold_constants import FoldConstants from finn.transformation.insert_topk import InsertTopK import finn.core.onnx_exec as oxe from pkgutil import get_data import pytest export_onnx_path = "test_output_lfc.onnx" @pytest.mark.parametrize("k", [1,5,10]) def test_topk_insert(k): tfc = get_test_model_trained("TFC", 1, 1) bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) model = ModelWrapper(export_onnx_path) #do transformations (no topk) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferDataTypes()) #verification: generate random input, run through net, streamline, run again, check that output is top-k raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float() output_golden = tfc.forward(input_brevitas).detach().numpy() output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] input_dict = {"global_in": nph.to_array(input_tensor)} output_dict = oxe.execute_onnx(model, input_dict) output_pysim = output_dict[list(output_dict.keys())[0]] #insert top-k model = model.transform(InsertTopK(k)) model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(InferShapes()) #verify output of top-k output_dict_topk = oxe.execute_onnx(model, input_dict) output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] assert np.array_equal(output_golden_topk.flatten(), output_pysim_topk.astype(np.int).flatten())