# Copyright (c) 2021, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import numpy as np import torch from brevitas.export import FINNManager from qonnx.core.datatype import DataType from qonnx.core.modelwrapper import ModelWrapper from qonnx.custom_op.registry import getCustomOp from qonnx.transformation.general import GiveUniqueNodeNames from qonnx.transformation.infer_datatypes import InferDataTypes from qonnx.transformation.infer_shapes import InferShapes from qonnx.util.basic import gen_finn_dt_tensor from torch import nn from finn.core.onnx_exec import execute_onnx from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim from finn.transformation.fpgadataflow.convert_to_hls_layers import InferLookupLayer from finn.transformation.fpgadataflow.create_stitched_ip import CreateStitchedIP from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode def make_lookup_model(embeddings, ishape, idt, edt): num_embeddings, embedding_dim = embeddings.shape class LookupModel(nn.Module): def __init__(self, num_embeddings, embedding_dim): super().__init__() self.lookup = nn.Embedding( num_embeddings=num_embeddings, embedding_dim=embedding_dim ) def forward(self, x): x = self.lookup(x) return x torch_model = LookupModel(num_embeddings, embedding_dim) input_t = torch.zeros(ishape, dtype=torch.int64) ret = FINNManager.export(torch_model, input_t=input_t, opset_version=11) model = ModelWrapper(ret) iname = model.graph.input[0].name ename = model.graph.node[0].input[0] model.set_tensor_datatype(iname, idt) eshape = model.get_tensor_shape(ename) assert tuple(eshape) == embeddings.shape model.set_initializer(ename, embeddings) model.set_tensor_datatype(ename, edt) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return model # embedding DataType @pytest.mark.parametrize("edt", [DataType["FIXED<8,2>"]]) # other embedding config @pytest.mark.parametrize( "embedding_cfg", [(130, DataType["UINT8"], 25), (5145, DataType["UINT16"], 20)] ) # execution mode @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.fpgadataflow @pytest.mark.vivado @pytest.mark.slow def test_fpgadataflow_lookup(edt, embedding_cfg, exec_mode): ishape = (1, 10) num_embeddings, idt, embedding_dim = embedding_cfg eshape = (num_embeddings, embedding_dim) exp_oshape = tuple(list(ishape) + [embedding_dim]) embeddings = gen_finn_dt_tensor(edt, eshape) model = make_lookup_model(embeddings, ishape, idt, edt) assert len(model.graph.node) == 1 assert model.graph.node[0].op_type == "Gather" iname = model.graph.input[0].name ename = model.graph.node[0].input[0] oname = model.graph.output[0].name assert model.get_tensor_datatype(iname) == idt assert model.get_tensor_datatype(ename) == edt assert model.get_tensor_datatype(oname) == edt assert tuple(model.get_tensor_shape(ename)) == eshape assert tuple(model.get_tensor_shape(oname)) == exp_oshape assert (model.get_initializer(ename) == embeddings).all() itensor = gen_finn_dt_tensor(idt, ishape).astype(np.int64) itensor = np.clip(itensor, 0, num_embeddings - 1) ret = execute_onnx(model, {iname: itensor}) exp_out = np.take(embeddings, itensor, axis=0) assert (exp_out == ret[oname]).all() # call transformation to convert to HLS and verify conversion model = model.transform(InferLookupLayer()) assert model.graph.node[0].op_type == "Lookup" assert model.graph.node[0].input[0] == iname assert model.graph.node[0].input[1] == ename assert model.graph.node[0].output[0] == oname if exec_mode == "cppsim": model = model.transform(PrepareCppSim()) model = model.transform(CompileCppSim()) model = model.transform(SetExecMode("cppsim")) elif exec_mode == "rtlsim": model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP("xczu3eg-sbva484-1-e", 10)) model = model.transform(HLSSynthIP()) model = model.transform(SetExecMode("rtlsim")) model = model.transform(PrepareRTLSim()) ret_sim = execute_onnx(model, {iname: itensor}) assert (exp_out == ret_sim[oname]).all() @pytest.mark.fpgadataflow @pytest.mark.vivado @pytest.mark.slow def test_fpgadataflow_lookup_external(): fpga_part = "xczu3eg-sbva484-1-e" edt = DataType["INT8"] embedding_cfg = (200000, DataType["UINT32"], 300) ishape = (1, 600) num_embeddings, idt, embedding_dim = embedding_cfg eshape = (num_embeddings, embedding_dim) exp_oshape = tuple(list(ishape) + [embedding_dim]) embeddings = gen_finn_dt_tensor(edt, eshape) model = make_lookup_model(embeddings, ishape, idt, edt) assert len(model.graph.node) == 1 assert model.graph.node[0].op_type == "Gather" iname = model.graph.input[0].name ename = model.graph.node[0].input[0] oname = model.graph.output[0].name assert model.get_tensor_datatype(iname) == idt assert model.get_tensor_datatype(ename) == edt assert model.get_tensor_datatype(oname) == edt assert tuple(model.get_tensor_shape(ename)) == eshape assert tuple(model.get_tensor_shape(oname)) == exp_oshape assert (model.get_initializer(ename) == embeddings).all() # itensor = gen_finn_dt_tensor(idt, ishape).astype(np.int64) # itensor = np.clip(itensor, 0, num_embeddings - 1) # ret = execute_onnx(model, {iname: itensor}) # exp_out = np.take(embeddings, itensor, axis=0) # assert (exp_out == ret[oname]).all() # call transformation to convert to HLS and verify conversion model = model.transform(InferLookupLayer()) assert model.graph.node[0].op_type == "Lookup" assert model.graph.node[0].input[0] == iname assert model.graph.node[0].input[1] == ename assert model.graph.node[0].output[0] == oname getCustomOp(model.graph.node[0]).set_nodeattr("mem_mode", "external") model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP(fpga_part, 10)) model = model.transform(HLSSynthIP()) model = model.transform(CreateStitchedIP(fpga_part, 10.0)) ifnames = eval(model.get_metadata_prop("vivado_stitch_ifnames")) # check some generated files/interfaces for the generated stitched IP assert ifnames["aximm"] == [["m_axi_gmem0", 32]] assert ifnames["s_axis"] == [["s_axis_0", 32]] assert ifnames["m_axis"] == [["m_axis_0", 32]] assert ifnames["axilite"] == ["s_axi_control_0"]