# Copyright (c) 2021, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import numpy as np import onnx import torch from io import BytesIO from qonnx.core.datatype import DataType from qonnx.core.modelwrapper import ModelWrapper from qonnx.transformation.general import GiveUniqueNodeNames from qonnx.util.basic import gen_finn_dt_tensor from torch import nn from finn.core.onnx_exec import execute_onnx from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim from finn.transformation.fpgadataflow.convert_to_hls_layers import InferConcatLayer from finn.transformation.fpgadataflow.create_stitched_ip import CreateStitchedIP from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.insert_fifo import InsertFIFO from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode def make_concat_model(i_shapes, idt): class ConcatModel(nn.Module): def forward(self, *args): return torch.cat(args, -1) torch_model = ConcatModel() torch_model.eval() input_t = [] for i_shape in i_shapes: input_t.append(torch.zeros(i_shape, dtype=torch.float32)) input_t = tuple(input_t) model_bytes = BytesIO() torch.onnx.export(torch_model, input_t, model_bytes, opset_version=11) model = onnx.ModelProto.FromString(model_bytes.getvalue()) model = ModelWrapper(model) for inp in model.graph.input: model.set_tensor_datatype(inp.name, idt) return model @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.parametrize("idt", [DataType["INT4"]]) @pytest.mark.vivado @pytest.mark.slow def test_fpgadataflow_concat(exec_mode, idt): i_shapes = [(1, 2, 4), (1, 2, 6), (1, 2, 1)] i_data = [gen_finn_dt_tensor(idt, x) for x in i_shapes] model = make_concat_model(i_shapes, idt) assert len(i_shapes) == len(model.graph.input) assert len(model.graph.output) == 1 exp_oshape = list(i_shapes[0][:-1]) + [sum(x[-1] for x in i_shapes)] oname = model.graph.output[0].name assert model.get_tensor_shape(oname) == exp_oshape exp_out = np.concatenate(i_data, axis=-1) inp_dict = {} for i in range(len(i_shapes)): inp_dict[model.graph.input[i].name] = i_data[i] ret = execute_onnx(model, inp_dict) assert (ret[oname] == exp_out).all() # call transformation to convert to HLS and verify conversion model = model.transform(InferConcatLayer()) assert model.graph.node[0].op_type == "StreamingConcat" assert model.graph.node[0].domain == "finn.custom_op.fpgadataflow" if exec_mode == "cppsim": model = model.transform(PrepareCppSim()) model = model.transform(CompileCppSim()) model = model.transform(SetExecMode("cppsim")) elif exec_mode == "rtlsim": model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP("xc7z020clg400-1", 10)) model = model.transform(HLSSynthIP()) model = model.transform(SetExecMode("rtlsim")) model = model.transform(PrepareRTLSim()) ret_sim = execute_onnx(model, inp_dict) assert (exp_out == ret_sim[oname]).all() @pytest.mark.vivado @pytest.mark.slow def test_fpgadataflow_concat_stitchedip(): idt = DataType["INT4"] fpga_part = "xc7z020clg400-1" clk_ns = 10 i_shapes = [(1, 2, 4), (1, 2, 6), (1, 2, 1)] i_data = [gen_finn_dt_tensor(idt, x) for x in i_shapes] model = make_concat_model(i_shapes, idt) assert len(i_shapes) == len(model.graph.input) assert len(model.graph.output) == 1 exp_oshape = list(i_shapes[0][:-1]) + [sum(x[-1] for x in i_shapes)] oname = model.graph.output[0].name assert model.get_tensor_shape(oname) == exp_oshape exp_out = np.concatenate(i_data, axis=-1) inp_dict = {} for i in range(len(i_shapes)): inp_dict[model.graph.input[i].name] = i_data[i] ret = execute_onnx(model, inp_dict) assert (ret[oname] == exp_out).all() # call transformation to convert to HLS and verify conversion model = model.transform(InferConcatLayer()) assert model.graph.node[0].op_type == "StreamingConcat" assert model.graph.node[0].domain == "finn.custom_op.fpgadataflow" model = model.transform(InsertFIFO(create_shallow_fifos=True)) model = model.transform(GiveUniqueNodeNames()) model = model.transform(PrepareIP(fpga_part, clk_ns)) model = model.transform(HLSSynthIP()) model = model.transform( CreateStitchedIP( fpga_part, clk_ns, vitis=False, ) ) model.set_metadata_prop("exec_mode", "rtlsim") model.set_metadata_prop("rtlsim_trace", "trace.vcd") model.save("dbg.onnx") ret_sim = execute_onnx(model, inp_dict) assert (exp_out == ret_sim[oname]).all()