# Copyright (c) 2022 Xilinx, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of Xilinx nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import json import shutil from brevitas.export.onnx.generic.manager import BrevitasONNXManager from qonnx.core.modelwrapper import ModelWrapper from qonnx.custom_op.registry import getCustomOp import finn.builder.build_dataflow as build import finn.builder.build_dataflow_config as build_cfg from finn.util.basic import make_build_dir from finn.util.test import get_trained_network_and_ishape def fetch_test_model(topology, wbits=2, abits=2): tmp_output_dir = make_build_dir("build_fifosizing_%s_" % topology) (model, ishape) = get_trained_network_and_ishape(topology, wbits, abits) chkpt_name = tmp_output_dir + "/model.onnx" BrevitasONNXManager.export(model, ishape, chkpt_name) return tmp_output_dir @pytest.mark.slow @pytest.mark.vivado @pytest.mark.parametrize( "method", ["largefifo_rtlsim_python", "largefifo_rtlsim_cpp", "characterize"] ) @pytest.mark.parametrize("topology", ["tfc"]) def test_fifosizing_linear(method, topology): force_python_rtlsim = "python" in method method_key = "largefifo_rtlsim" if "largefifo_rtlsim" in method else "characterize" tmp_output_dir = fetch_test_model(topology) cfg = build_cfg.DataflowBuildConfig( output_dir=tmp_output_dir, auto_fifo_depths=True, auto_fifo_strategy=method_key, target_fps=10000 if topology == "tfc" else 1000, force_python_rtlsim=force_python_rtlsim, synth_clk_period_ns=10.0, board="Pynq-Z1", rtlsim_batch_size=100, shell_flow_type=build_cfg.ShellFlowType.VIVADO_ZYNQ, generate_outputs=[ build_cfg.DataflowOutputType.ESTIMATE_REPORTS, build_cfg.DataflowOutputType.STITCHED_IP, build_cfg.DataflowOutputType.RTLSIM_PERFORMANCE, ], default_mem_mode=build_cfg.ComputeEngineMemMode.DECOUPLED, ) build.build_dataflow_cfg(tmp_output_dir + "/model.onnx", cfg) with open(tmp_output_dir + "/report/estimate_network_performance.json") as f: est_data = json.load(f) with open(tmp_output_dir + "/report/rtlsim_performance.json") as f: sim_data = json.load(f) assert ( float(sim_data["throughput[images/s]"]) / float(est_data["estimated_throughput_fps"]) > 0.9 ) # now run the same build using the generated folding and FIFO config tmp_output_dir_cmp = fetch_test_model(topology) cfg_cmp = cfg cfg_cmp.output_dir = tmp_output_dir_cmp cfg_cmp.auto_fifo_depths = False cfg_cmp.target_fps = None cfg_cmp.generate_outputs = [build_cfg.DataflowOutputType.STITCHED_IP] cfg_cmp.folding_config_file = tmp_output_dir + "/final_hw_config.json" build.build_dataflow_cfg(tmp_output_dir_cmp + "/model.onnx", cfg_cmp) model0 = ModelWrapper( tmp_output_dir + "/intermediate_models/step_create_stitched_ip.onnx" ) model1 = ModelWrapper( tmp_output_dir_cmp + "/intermediate_models/step_create_stitched_ip.onnx" ) assert len(model0.graph.node) == len(model1.graph.node) for i in range(len(model0.graph.node)): node0 = model0.graph.node[i] node1 = model1.graph.node[i] assert node0.op_type == node1.op_type if node0.op_type == "StreamingFIFO": node0_inst = getCustomOp(node0) node1_inst = getCustomOp(node1) assert node0_inst.get_nodeattr("depth") == node1_inst.get_nodeattr("depth") shutil.rmtree(tmp_output_dir) shutil.rmtree(tmp_output_dir_cmp)