diff --git a/src/finn/transformation/fpgadataflow/derive_characteristic.py b/src/finn/transformation/fpgadataflow/derive_characteristic.py new file mode 100644 index 0000000000000000000000000000000000000000..9029d3ed5f0dd3edf6a42212e06c9a6f905420e8 --- /dev/null +++ b/src/finn/transformation/fpgadataflow/derive_characteristic.py @@ -0,0 +1,141 @@ +# Copyright (c) 2022, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +import numpy as np +import qonnx.custom_op.registry as registry +from pyverilator.axi_utils import _read_signal, rtlsim_multi_io +from qonnx.transformation.base import NodeLocalTransformation + +from finn.util.fpgadataflow import is_fpgadataflow_node + + +class DeriveCharacteristic(NodeLocalTransformation): + """For each node in the graph, run rtlsim to obtain the i/o + characteristic function for FIFO sizing and set the attribute. + It is assumed that the PrepareRTLSim transformation was already + called on the graph. + + This transformation performs rtlsim for each node, so it will run for + some time (minutes to hours depending on configuration). + + * period (int) desired period over which the characteristic function + will be derived. + + * num_workers (int or None) number of parallel workers, see documentation in + NodeLocalTransformation for more details. + """ + + def __init__(self, period, num_workers=None): + super().__init__(num_workers=num_workers) + self.period = period + + def applyNodeLocal(self, node): + op_type = node.op_type + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.getCustomOp(node) + # TODO move into HLSCustomOp? + # ideally, call execute with rtlsim mode and + # specify some way of setting up a hook + # ensure rtlsim is ready + assert inst.get_nodeattr("rtlsim_so") != "", ( + "rtlsim not ready for " + node.name + ) + # restricted to single input and output nodes for now + multistream_optypes = [ + "AddStreams_Batch", + "DuplicateStreams_Batch", + "StreamingConcat", + ] + assert ( + node.op_type not in multistream_optypes + ), f"{node.name} unsupported" + exp_cycles = inst.get_exp_cycles() + n_inps = np.prod(inst.get_folded_input_shape()[:-1]) + n_outs = np.prod(inst.get_folded_output_shape()[:-1]) + if exp_cycles == 0: + # try to come up with an optimistic estimate + exp_cycles = min(n_inps, n_outs) + assert ( + self.period < exp_cycles + ), "Period %d too short to characterize %s" % (self.period, node.name) + sim = inst.get_rtlsim + # signal name + sname = "_" + inst.hls_sname() + "_" + io_dict = { + "inputs": { + "in0": [0 for i in range(n_inps)], + # "weights": wei * num_w_reps + }, + "outputs": {"out": []}, + } + + txns_in = [] + txns_out = [] + + def monitor_txns(sim_obj): + for inp in io_dict["inputs"]: + in_ready = _read_signal(sim, inp + sname + "TREADY") == 1 + in_valid = _read_signal(sim, inp + sname + "TVALID") == 1 + if in_ready and in_valid: + txns_in.append(1) + else: + txns_in.append(0) + for outp in io_dict["outputs"]: + if ( + _read_signal(sim, outp + sname + "TREADY") == 1 + and _read_signal(sim, outp + sname + "TVALID") == 1 + ): + txns_out.append(1) + else: + txns_out.append(0) + + total_cycle_count = rtlsim_multi_io( + sim, + io_dict, + n_outs, + sname=sname, + liveness_threshold=self.period, + hook_preclk=monitor_txns, + ) + assert total_cycle_count <= self.period + if len(txns_in) < self.period: + txns_in += [0 for x in range(self.period - len(txns_in))] + if len(txns_out) < self.period: + txns_out += [0 for x in range(self.period - len(txns_out))] + io_characteristic = txns_in + txns_out + inst.set_nodeattr("io_characteristic", io_characteristic) + inst.set_nodeattr("io_characteristic_period", self.period) + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) + return (node, False)