From fa1d6f7b7cfb2bfcf6c7b1c6b7c754ece67066c3 Mon Sep 17 00:00:00 2001 From: auphelia <jakobapk@web.de> Date: Wed, 22 Apr 2020 13:41:39 +0100 Subject: [PATCH] [Test] Add new test for streaming fclayer decoupled mode with mh=mw=128 --- .../fpgadataflow/test_fpgadataflow_fclayer.py | 87 +++++++++++++++++++ 1 file changed, 87 insertions(+) diff --git a/tests/fpgadataflow/test_fpgadataflow_fclayer.py b/tests/fpgadataflow/test_fpgadataflow_fclayer.py index 80c9e84ba..330d9a1ae 100644 --- a/tests/fpgadataflow/test_fpgadataflow_fclayer.py +++ b/tests/fpgadataflow/test_fpgadataflow_fclayer.py @@ -300,3 +300,90 @@ def test_fpgadataflow_fclayer_rtlsim(mem_mode, idt, wdt, act, nf, sf, mw, mh): hls_synt_res_est = model.analysis(hls_synth_res_estimation) assert "StreamingFCLayer_Batch_0" in hls_synt_res_est + +# mem_mode: const or decoupled +@pytest.mark.parametrize("mem_mode", ["decoupled"]) +# activation: None or DataType +@pytest.mark.parametrize("act", [DataType.INT4]) +# weight datatype +@pytest.mark.parametrize("wdt", [DataType.INT4]) +# input datatype +@pytest.mark.parametrize("idt", [DataType.INT4]) +# neuron folding, -1 is maximum possible +@pytest.mark.parametrize("nf", [-1]) +# synapse folding, -1 is maximum possible +@pytest.mark.parametrize("sf", [-1]) +# HLS matrix width (input features) +@pytest.mark.parametrize("mw", [128]) +# HLS matrix height (output features) +@pytest.mark.parametrize("mh", [128]) +def test_fpgadataflow_fclayer_large_depth_decoupled_mode(mem_mode, idt, wdt, act, nf, sf, mw, mh): + if nf == -1: + nf = mh + if sf == -1: + sf = mw + pe = mh // nf + simd = mw // sf + assert mh % pe == 0 + assert mw % sf == 0 + # generate weights + W = gen_finn_dt_tensor(wdt, (mw, mh)) + # generate input data + x = gen_finn_dt_tensor(idt, (1, mw)) + if act is None: + # no activation, produce accumulators + T = None + tdt = None + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + odt = DataType.UINT32 + else: + odt = DataType.INT32 + else: + odt = act + (min, max) = calculate_signed_dot_prod_range(idt, wdt, mw) + n_steps = act.get_num_possible_values() - 1 + T = np.random.randint(min, max - 1, (mh, n_steps)).astype(np.float32) + # provide non-decreasing thresholds + T = np.sort(T, axis=1) + # generate thresholds for activation + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + tdt = DataType.UINT32 + # bias thresholds to be positive + T = np.ceil((T + mw) / 2) + assert (T >= 0).all() + else: + tdt = DataType.INT32 + model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt, T, tdt) + for node in model.graph.node: + # lookup op_type in registry of CustomOps + inst = getCustomOp(node) + inst.set_nodeattr("mem_mode", mem_mode) + + # prepare input data + input_dict = prepare_inputs(x, idt, wdt) + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + # convert inputs to binary and use xnorpopcountmatmul + y = xp.xnorpopcountmatmul((x + 1) / 2, (W + 1) / 2) + else: + y = np.matmul(x, W) + if T is not None: + y = multithreshold(y, T) + if act == DataType.BIPOLAR: + # binary to bipolar + y = 2 * y - 1 + else: + # signed offset + y += act.min() + oshape = model.get_tensor_shape("outp") + y_expected = y.reshape(oshape) + # TODO split up into several dependent tests -- need to check how this + # works for parametrized tests... + model = model.transform(SetExecMode("rtlsim")) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(CodeGen_ipgen("xc7z020clg400-1", 5)) + model = model.transform(HLSSynth_IPGen()) + y_produced = oxe.execute_onnx(model, input_dict)["outp"] + assert (y_produced.reshape(y_expected.shape) == y_expected).all(), "rtlsim failed" + + hls_synt_res_est = model.analysis(hls_synth_res_estimation) + assert "StreamingFCLayer_Batch_0" in hls_synt_res_est -- GitLab