diff --git a/notebooks/FCLayer_graph.onnx b/notebooks/FCLayer_graph.onnx index 641ef704256c0c7af863cafc79b3f6af57d0abd5..4cd3fa2804a9960ed405da87d02b0b15b5909bf4 100644 Binary files a/notebooks/FCLayer_graph.onnx and b/notebooks/FCLayer_graph.onnx differ diff --git a/notebooks/FINN-CodeGenerationAndCompilation.ipynb b/notebooks/FINN-CodeGenerationAndCompilation.ipynb index f33d4baf724753edb2418a02b47f8bb9aac44af9..e81bc5a364b67caf6cac6be78317b8e306277cdc 100644 --- a/notebooks/FINN-CodeGenerationAndCompilation.ipynb +++ b/notebooks/FINN-CodeGenerationAndCompilation.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -73,7 +73,6 @@ "mh = 8\n", "pe = 4\n", "simd = 4\n", - "wmem = mw * mh // (pe * simd)\n", "nf = mh // pe\n", "sf = mw // simd\n" ] @@ -87,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -110,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -127,8 +126,8 @@ " MH=mh,\n", " SIMD=simd,\n", " PE=pe,\n", - " WMEM=wmem,\n", - " TMEM=0,\n", + " noActivation=1,\n", + " binaryXnorMode=1,\n", " inputDataType=idt.name,\n", " weightDataType=wdt.name,\n", " outputDataType=odt.name,\n", @@ -144,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -185,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -194,15 +193,13 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\n", - "Stopping http://0.0.0.0:8081\n", "Serving 'FCLayer_graph.onnx' at http://0.0.0.0:8081\n" ] } @@ -214,7 +211,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -247,7 +244,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -261,6 +258,8 @@ " for node in model.graph.node:\n", " if node.domain == \"finn\":\n", " backend_attribute = get_by_name(node.attribute, \"backend\")\n", + " if backend_attribute is None:\n", + " continue\n", " backend_value = backend_attribute.s.decode(\"UTF-8\")\n", " if backend_value == \"fpgadataflow\":\n", " _codegen_single_node(node, model)\n", @@ -283,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 14, "metadata": {}, "outputs": [ { diff --git a/notebooks/FINN-CustomOps.ipynb b/notebooks/FINN-CustomOps.ipynb index 1f60546e342564dfbd6b3edf5472f0ba63ddbb0a..6d0e3b33ba1bf2787498ef7e85449e5db2d1e272 100644 --- a/notebooks/FINN-CustomOps.ipynb +++ b/notebooks/FINN-CustomOps.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -56,12 +56,12 @@ " MH=mh,\n", " SIMD=simd,\n", " PE=pe,\n", - " WMEM=wmem,\n", - " TMEM=tmem,\n", - " inputDataType=FINN-DataType,\n", - " weightDataType=FINN-DataType,\n", - " outputDataType=FINN-DataType,\n", + " inputDataType=<FINN DataType>,\n", + " weightDataType=<FINN DataType>,\n", + " outputDataType=<FINN DataType>,\n", " ActVal=actval,\n", + " binaryXnorMode=<0/1>,\n", + " noActivation=<0/1>\n", ")`" ] }, @@ -76,12 +76,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "<font size=\"3\">Custom Ops are represented in Finn as ONNX nodes on the one hand and by a CustomOp class on the other hand. This allows easier access to the different attributes and introduces special custom op functions. See below for the standard CustomOp class.</font>" + "<font size=\"3\">Custom Ops are represented in FINN as ONNX nodes on the one hand and by a CustomOp class on the other hand. This allows easier access to the different attributes and introduces special custom op functions. See below for the standard CustomOp class.</font>" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -188,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -399,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": { "scrolled": true }, @@ -431,15 +431,13 @@ " self.get_nodeattr(\"SIMD\"),\n", " export_wdt.get_hls_datatype_str(),\n", " self.get_nodeattr(\"PE\"),\n", - " self.get_nodeattr(\"WMEM\"),\n", + " self.calc_wmem(),\n", " )\n", " )\n", " else:\n", " f_weights.write(\n", " \"static BinaryWeights<{},{},{}> weights = \".format(\n", - " self.get_nodeattr(\"SIMD\"),\n", - " self.get_nodeattr(\"PE\"),\n", - " self.get_nodeattr(\"WMEM\"),\n", + " self.get_nodeattr(\"SIMD\"), self.get_nodeattr(\"PE\"), self.calc_wmem()\n", " )\n", " )\n", " f_weights.write(weight_hls_code)\n", @@ -453,6 +451,12 @@ " # use UINT32 threshold export for bipolar times bipolar\n", " inp_is_bipolar = self.get_input_datatype() == DataType.BIPOLAR\n", " wt_is_bipolar = self.get_weight_datatype() == DataType.BIPOLAR\n", + " # reinterpret inp/wt as bipolar if bin_xnor_mode is iset\n", + " inp_is_binary = self.get_input_datatype() == DataType.BINARY\n", + " wt_is_binary = self.get_weight_datatype() == DataType.BINARY\n", + " bin_xnor_mode = self.get_nodeattr(\"binaryXnorMode\") == 1\n", + " inp_is_bipolar = inp_is_bipolar or (inp_is_binary and bin_xnor_mode)\n", + " wt_is_bipolar = wt_is_bipolar or (wt_is_binary and bin_xnor_mode)\n", " if inp_is_bipolar and wt_is_bipolar:\n", " tdt = DataType.UINT32\n", " thresholds_hls_code = numpy_to_hls_code(\n", @@ -470,7 +474,7 @@ " f_thresh.write(\n", " \"static ThresholdsActivation<{},{},{},{},{},{},{}> threshs \\\n", " = \".format(\n", - " self.get_nodeattr(\"TMEM\"),\n", + " self.calc_tmem(),\n", " self.get_nodeattr(\"PE\"),\n", " threshold_tensor.shape[-1],\n", " tdt_hls,\n",