diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py index c77fd81c0bfaa77b458368807410b8bfec17abb7..9af5dfc3b2c8b7dc899520a9c49725fc975351bf 100644 --- a/src/finn/custom_op/fpgadataflow/__init__.py +++ b/src/finn/custom_op/fpgadataflow/__init__.py @@ -320,12 +320,20 @@ Found no codegen dir for this node, did you run the prepare_cppsim transformatio def npy_to_dynamic_output(self, context): """Reads the output from a .npy file and saves it at the right place in the context dictionary.""" - # TODO support multi-output nodes as needed node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output + def npy_to_dynamic_outputs(self, context, npy_list): + """Reads the output from .npy files and saves it at the right place in + the context dictionary.""" + node = self.onnx_node + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + for i in range(len(npy_list)): + output = np.load("{}/{}".format(code_gen_dir, npy_list[i])) + context[node.output[i]] = output + def exec_precompiled_singlenode_model(self): """Executes precompiled executable.""" executable_path = self.get_nodeattr("executable_path") @@ -421,6 +429,87 @@ compilation transformations? sim.stop_vcd_trace() return outputs + def rtlsim_multi_io(self, sim, io_dict): + """Runs the pyverilator simulation by passing the input values to the simulation, + toggle the clock and observing the execution time. Function contains also an + observation loop that can abort the simulation if no output value is produced + after a set number of cycles. Accepts multiple inputs and outputs.""" + + trace_file = self.get_nodeattr("rtlsim_trace") + if trace_file != "": + if trace_file == "default": + trace_file = self.onnx_node.name + ".vcd" + sim.start_vcd_trace(trace_file) + + for outp in io_dict["outputs"]: + sim.io[outp + "_V_V_TREADY"] = 1 + + # observe if output is completely calculated + # total_cycle_count will contain the number of cycles the calculation ran + num_out_values = self.get_number_output_values() + output_done = False + total_cycle_count = 0 + output_count = 0 + old_output_count = 0 + + # avoid infinite looping of simulation by aborting when there is no change in + # output values after 100 cycles + no_change_count = 0 + liveness_threshold = pyverilate_get_liveness_threshold_cycles() + + while not (output_done): + for inp in io_dict["inputs"]: + inputs = io_dict["inputs"][inp] + sim.io[inp + "_V_V_TVALID"] = 1 if len(inputs) > 0 else 0 + sim.io[inp + "_V_V_TDATA"] = inputs[0] if len(inputs) > 0 else 0 + if ( + sim.io[inp + "_V_V_TREADY"] == 1 + and sim.io[inp + "_V_V_TVALID"] == 1 + ): + inputs = inputs[1:] + io_dict["inputs"][inp] = inputs + + for outp in io_dict["outputs"]: + outputs = io_dict["outputs"][outp] + if ( + sim.io[outp + "_V_V_TVALID"] == 1 + and sim.io[outp + "_V_V_TREADY"] == 1 + ): + outputs = outputs + [sim.io[outp + "_V_V_TDATA"]] + output_count += 1 + io_dict["outputs"][outp] = outputs + + sim.io.ap_clk = 1 + sim.io.ap_clk = 0 + + total_cycle_count = total_cycle_count + 1 + + if output_count == old_output_count: + no_change_count = no_change_count + 1 + else: + no_change_count = 0 + old_output_count = output_count + + # check if all expected output words received + if output_count == num_out_values: + self.set_nodeattr("sim_cycles", total_cycle_count) + output_done = True + + # end sim on timeout + if no_change_count == liveness_threshold: + if trace_file != "": + sim.flush_vcd_trace() + sim.stop_vcd_trace() + raise Exception( + "Error in simulation! Takes too long to produce output. " + "Consider setting the LIVENESS_THRESHOLD env.var. to a " + "larger value." + ) + + if trace_file != "": + sim.flush_vcd_trace() + sim.stop_vcd_trace() + def execute_node(self, context, graph): """Executes single node using cppsim or rtlsim.""" mode = self.get_nodeattr("exec_mode") diff --git a/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..54051af5e0387081a23e1f8fa77ec9e363098830 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py @@ -0,0 +1,361 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os + +import numpy as np + +from finn.core.datatype import DataType +from finn.custom_op.fpgadataflow import HLSCustomOp +from onnx import TensorProto, helper +from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy + + +class DuplicateStreams_Batch(HLSCustomOp): + """Class that corresponds to finn-hlslib function of the same name.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + + def get_nodeattr_types(self): + my_attrs = { + "NumChannels": ("i", True, 0), + "PE": ("i", True, 0), + # FINN DataTypes for input + "inputDataType": ("s", True, ""), + # number of input vectors, examples: + # [1] is a single vector (like a FC layer with batch=1) + # [4] is four vectors (like a FC layer with batch=4) + # [1, 4, 4] is four * four vectors (like a conv layer with batch=1) + "numInputVectors": ("ints", False, [1]), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def get_normal_input_shape(self): + ch = self.get_nodeattr("NumChannels") + vecs = list(self.get_nodeattr("numInputVectors")) + ishape = tuple(vecs + [ch]) + return ishape + + def get_folded_input_shape(self): + ch = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + vecs = list(self.get_nodeattr("numInputVectors")) + assert ch % pe == 0, "PE must divide NumChannels" + folds = int(ch / pe) + folded_ishape = tuple(vecs + [folds, pe]) + return folded_ishape + + def get_normal_output_shape(self): + return self.get_normal_input_shape() + + def get_folded_output_shape(self): + return self.get_folded_input_shape() + + def make_shape_compatible_op(self, model): + exp_ishape = self.get_normal_input_shape() + oshape = self.get_normal_output_shape() + ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) + assert ishape == exp_ishape, "Unexpected input shape." + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + split_input = np.concatenate((values, values), axis=0) + return helper.make_node( + "Split", + inputs=[split_input], + outputs=[self.onnx_node.output[0], self.onnx_node.output[0]], + value=helper.make_tensor( + name="const_tensor", data_type=TensorProto.FLOAT, axis=0 + ), + ) + + def infer_node_datatype(self, model): + odt = self.get_output_datatype() + model.set_tensor_datatype(self.onnx_node.output[0], odt) + + def verify_node(self): + info_messages = [] + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + + # verify that "backend" is set to "fpgadataflow" + backend_value = self.get_nodeattr("backend") + if backend_value == "fpgadataflow": + info_messages.append("Attribute backend is set correctly") + else: + info_messages.append('Attribute backend should be set to "fpgadataflow"') + + # verify that all necessary attributes exist + try: + self.get_nodeattr("code_gen_dir_cppsim") + self.get_nodeattr("executable_path") + self.get_nodeattr("NumChannels") + self.get_nodeattr("PE") + self.get_nodeattr("inputDataType") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The required GlobalAccPool_Batch attributes do not exist.""" + ) + + return info_messages + + def get_input_datatype(self): + """Returns FINN DataType of input.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_output_datatype(self): + """Returns FINN DataType of output.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_instream_width(self): + """Returns input stream width.""" + ibits = self.get_input_datatype().bitwidth() + pe = self.get_nodeattr("PE") + in_width = pe * ibits + return in_width + + def get_outstream_width(self): + """Returns output stream width.""" + obits = self.get_output_datatype().bitwidth() + pe = self.get_nodeattr("PE") + out_width = pe * obits + return out_width + + def get_number_output_values(self): + return 2 * np.prod(self.get_folded_output_shape()[1:-1]) + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + exp_ishape = self.get_normal_input_shape() + exp_oshape = self.get_normal_output_shape() + folded_ishape = self.get_folded_input_shape() + folded_oshape = self.get_folded_output_shape() + + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + inp = context[node.input[0]] + assert str(inp.dtype) == "float32", "Input datatype is not float32" + assert inp.shape == exp_ishape, """Input shape doesn't match expected shape .""" + export_idt = self.get_input_datatype() + # reshape input into folded form + inp = inp.reshape(folded_ishape) + # make copy before saving array + reshaped_input = inp.copy() + np.save(os.path.join(code_gen_dir, "input_0.npy"), reshaped_input) + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_outputs(context, ["output0.npy", "output1.npy"]) + assert ( + context[node.output[0]].shape == folded_oshape + ), "cppsim \ + did not produce expected ofolded utput shape" + assert ( + context[node.output[1]].shape == folded_oshape + ), "cppsim \ + did not produce expected ofolded utput shape" + context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape) + context[node.output[1]] = context[node.output[1]].reshape(*exp_oshape) + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + rtlsim_inp = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + rtlsim_dict = { + "inputs": {"in0": rtlsim_inp}, + "outputs": {"out0": [], "out1": []}, + } + self.rtlsim_multi_io(sim, rtlsim_dict) + odt = self.get_output_datatype() + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_shape = self.get_folded_output_shape() + + out_npy_path = "{}/output0.npy".format(code_gen_dir) + rtlsim_output_to_npy( + rtlsim_dict["outputs"]["out0"], + out_npy_path, + odt, + out_shape, + packed_bits, + target_bits, + ) + # load and reshape output 0 + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[0]] = output + + out_npy_path = "{}/output1.npy".format(code_gen_dir) + rtlsim_output_to_npy( + rtlsim_dict["outputs"]["out1"], + out_npy_path, + odt, + out_shape, + packed_bits, + target_bits, + ) + # load and reshape output 1 + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[1]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + assert ( + context[node.output[0]].shape == exp_oshape + ), """Output0 shape doesn't match expected shape.""" + assert ( + context[node.output[1]].shape == exp_oshape + ), """Output1 shape doesn't match expected shape.""" + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"'] + + def defines(self, var): + self.code_gen_dict["$DEFINES$"] = [] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_input_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"] = [] + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0);' + % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out0 ("out0");'.format(self.get_outstream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out1 ("out1");'.format(self.get_outstream_width()) + ) + + def docompute(self): + self.code_gen_dict["$DOCOMPUTE$"] = [ + """DuplicateStreams_Batch<{}, {}> (in0, out0, out1, 1);""".format( + self.get_outstream_width(), self.get_number_output_values() // 2, + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output0.npy" % code_gen_dir + npy_out1 = "%s/output1.npy" % code_gen_dir + oshape = self.get_folded_output_shape() + oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}") + + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out0, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out, + ) + ] + + self.code_gen_dict["$DATAOUTSTREAM$"] += [ + 'apintstream2npy<%s, %s, %d, %s>(out1, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out1, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + """void {}(hls::stream<ap_uint<{}>> &in0, + hls::stream<ap_uint<{}>> &out0, + hls::stream<ap_uint<{}>> &out1)""".format( + self.onnx_node.name, + self.get_instream_width(), + self.get_outstream_width(), + self.get_outstream_width(), + ) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out0") + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out1") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py index ac1f49ee26d1c23bd1b0e67ae4ba7e0c2b55b435..949fdd51df2710fd2361e5f599edf1f6c29a633f 100644 --- a/src/finn/custom_op/registry.py +++ b/src/finn/custom_op/registry.py @@ -46,6 +46,7 @@ from finn.custom_op.fpgadataflow.streamingdatawidthconverter_batch import ( from finn.custom_op.fpgadataflow.globalaccpool_batch import GlobalAccPool_Batch from finn.custom_op.fpgadataflow.addstreams_batch import AddStreams_Batch from finn.custom_op.fpgadataflow.labelselect_batch import LabelSelect_Batch +from finn.custom_op.fpgadataflow.duplicatestreams_batch import DuplicateStreams_Batch # create a mapping of all known CustomOp names and classes custom_op = {} @@ -64,6 +65,7 @@ custom_op["StreamingFIFO"] = StreamingFIFO custom_op["GlobalAccPool_Batch"] = GlobalAccPool_Batch custom_op["AddStreams_Batch"] = AddStreams_Batch custom_op["LabelSelect_Batch"] = LabelSelect_Batch +custom_op["DuplicateStreams_Batch"] = DuplicateStreams_Batch def getCustomOp(node): diff --git a/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py new file mode 100644 index 0000000000000000000000000000000000000000..728f9429e2f790448d2899338ba221cf20ca23a2 --- /dev/null +++ b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py @@ -0,0 +1,126 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest + +from onnx import TensorProto, helper + +import finn.core.onnx_exec as oxe +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( + ReplaceVerilogRelPaths, +) + + +def make_dupstreams_modelwrapper(ch, pe, idim, idt): + shape = [1, idim, idim, ch] + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, shape) + outp0 = helper.make_tensor_value_info("outp0", TensorProto.FLOAT, shape) + outp1 = helper.make_tensor_value_info("outp1", TensorProto.FLOAT, shape) + + dupstrm_node = helper.make_node( + "DuplicateStreams_Batch", + ["inp"], + ["outp0", "outp1"], + domain="finn", + backend="fpgadataflow", + NumChannels=ch, + PE=pe, + inputDataType=idt.name, + numInputVectors=[1, idim, idim], + ) + graph = helper.make_graph( + nodes=[dupstrm_node], name="graph", inputs=[inp], outputs=[outp0, outp1] + ) + + model = helper.make_model(graph, producer_name="addstreams-model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", idt) + + return model + + +def prepare_inputs(input_tensor, idt): + return {"inp": input_tensor} + + +# data type +@pytest.mark.parametrize("idt", [DataType.INT4, DataType.UINT16]) +# channels +@pytest.mark.parametrize("ch", [64]) +# folding +@pytest.mark.parametrize("fold", [-1, 2, 1]) +# image dimension +@pytest.mark.parametrize("imdim", [7]) +# execution mode +@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +@pytest.mark.vivado +def test_fpgadataflow_duplicatestreams(idt, ch, fold, imdim, exec_mode): + if fold == -1: + pe = 1 + else: + pe = ch // fold + assert ch % pe == 0 + + # generate input data + x = gen_finn_dt_tensor(idt, (1, imdim, imdim, ch)) + + model = make_dupstreams_modelwrapper(ch, pe, imdim, idt) + + if exec_mode == "cppsim": + model = model.transform(PrepareCppSim()) + model = model.transform(CompileCppSim()) + model = model.transform(SetExecMode("cppsim")) + elif exec_mode == "rtlsim": + model = model.transform(SetExecMode("rtlsim")) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(PrepareIP("xc7z020clg400-1", 5)) + model = model.transform(HLSSynthIP()) + model = model.transform(ReplaceVerilogRelPaths()) + model = model.transform(PrepareRTLSim()) + else: + raise Exception("Unknown exec_mode") + + # prepare input data and execute + input_dict = prepare_inputs(x, idt) + y0 = oxe.execute_onnx(model, input_dict)["outp0"] + y1 = oxe.execute_onnx(model, input_dict)["outp1"] + expected_y = x + + assert (y0 == expected_y).all(), exec_mode + " failed" + assert (y1 == expected_y).all(), exec_mode + " failed"