diff --git a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py index c0fec7c42b7a93a082b6af190cf3441b1e20e04d..de358f0aa92abe67251382c793e3f23742a0a45e 100644 --- a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py +++ b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py @@ -44,7 +44,6 @@ from finn.util.test import get_test_model_trained from finn.transformation.double_to_single_float import DoubleToSingleFloat from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount -from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls from finn.transformation.fpgadataflow.codegen_npysim import CodeGen_npysim from finn.transformation.fpgadataflow.compile import Compile @@ -68,9 +67,7 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(MakeMaxPoolNHWC()) model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) model = model.transform(ConvertBipolarMatMulToXnorPopcount()) - model = model.transform(absorb.AbsorbAddIntoMultiThreshold()) - model = model.transform(absorb.AbsorbMulIntoMultiThreshold()) - model = model.transform(RoundAndClipThresholds()) + model = model.transform(Streamline()) model.save("golden.onnx") # load one of the test vectors fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")