From f29a92fce5408094abc9d36fc207eb1a17eb1c11 Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <yamanu@xilinx.com> Date: Wed, 30 Oct 2019 11:42:40 +0000 Subject: [PATCH] [Test] add test_move_scalar_add_past_matmul --- ...mul.py => test_move_scalar_past_matmul.py} | 33 +++++++++++++++++++ 1 file changed, 33 insertions(+) rename tests/{test_move_scalar_mul_past_matmul.py => test_move_scalar_past_matmul.py} (53%) diff --git a/tests/test_move_scalar_mul_past_matmul.py b/tests/test_move_scalar_past_matmul.py similarity index 53% rename from tests/test_move_scalar_mul_past_matmul.py rename to tests/test_move_scalar_past_matmul.py index 55a7d8cbe..a9cd35d42 100644 --- a/tests/test_move_scalar_mul_past_matmul.py +++ b/tests/test_move_scalar_past_matmul.py @@ -39,3 +39,36 @@ def test_move_scalar_mul_past_matmul(): assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == "Mul" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] + + +def test_move_scalar_add_past_matmul(): + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [1, 2]) + add_param = oh.make_tensor_value_info("add_param", TensorProto.FLOAT, [1, 1]) + matmul_param = oh.make_tensor_value_info("matmul_param", TensorProto.FLOAT, [2, 2]) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [1, 2]) + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=[add_param, matmul_param], + nodes=[ + oh.make_node("Add", ["top_in", "add_param"], ["middle"]), + oh.make_node("MatMul", ["middle", "matmul_param"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform_single(si.infer_shapes) + model.set_initializer("add_param", np.asarray([[3]], dtype=np.float32)) + model.set_initializer( + "matmul_param", np.asarray([[2, 4], [-1, 1]], dtype=np.float32) + ) + new_model = model.transform_repeated(tx.move_scalar_add_past_matmul) + inp_dict = {"top_in": np.asarray([[-1.0, 1.0]], dtype=np.float32)} + out_orig = ox.execute_onnx(model, inp_dict)["top_out"] + out_transformed = ox.execute_onnx(new_model, inp_dict)["top_out"] + assert np.isclose(out_orig, out_transformed).all() + assert new_model.graph.node[0].op_type == "MatMul" + assert new_model.graph.node[1].op_type == "Add" + assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] -- GitLab