diff --git a/tests/fpgadataflow/test_fpgadataflow_fclayer.py b/tests/fpgadataflow/test_fpgadataflow_fclayer.py index 62d45ea8ba6f9398ff070d28168dc48eda37de42..80c9e84ba92c93e8a5d57ffaceb22b5abf188963 100644 --- a/tests/fpgadataflow/test_fpgadataflow_fclayer.py +++ b/tests/fpgadataflow/test_fpgadataflow_fclayer.py @@ -132,19 +132,19 @@ def prepare_inputs(input_tensor, idt, wdt): # mem_mode: const or decoupled @pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) # activation: None or DataType -@pytest.mark.parametrize("act", [None, DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("act", [None, DataType.BIPOLAR, DataType.INT4]) # weight datatype -@pytest.mark.parametrize("wdt", [DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("wdt", [DataType.BIPOLAR, DataType.INT4]) # input datatype -@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT4]) # neuron folding, -1 is maximum possible @pytest.mark.parametrize("nf", [-1, 2, 1]) # synapse folding, -1 is maximum possible @pytest.mark.parametrize("sf", [-1, 2, 1]) # HLS matrix width (input features) -@pytest.mark.parametrize("mw", [4]) +@pytest.mark.parametrize("mw", [16]) # HLS matrix height (output features) -@pytest.mark.parametrize("mh", [4]) +@pytest.mark.parametrize("mh", [16]) def test_fpgadataflow_fclayer_npysim(mem_mode, idt, wdt, act, nf, sf, mw, mh): if nf == -1: nf = mh @@ -217,19 +217,19 @@ def test_fpgadataflow_fclayer_npysim(mem_mode, idt, wdt, act, nf, sf, mw, mh): # mem_mode: const or decoupled @pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) # activation: None or DataType -@pytest.mark.parametrize("act", [None, DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("act", [None, DataType.BIPOLAR, DataType.INT4]) # weight datatype -@pytest.mark.parametrize("wdt", [DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("wdt", [DataType.BIPOLAR, DataType.INT4]) # input datatype -@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2]) +@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT4]) # neuron folding, -1 is maximum possible @pytest.mark.parametrize("nf", [-1, 2, 1]) # synapse folding, -1 is maximum possible @pytest.mark.parametrize("sf", [-1, 2, 1]) # HLS matrix width (input features) -@pytest.mark.parametrize("mw", [4]) +@pytest.mark.parametrize("mw", [16]) # HLS matrix height (output features) -@pytest.mark.parametrize("mh", [4]) +@pytest.mark.parametrize("mh", [16]) def test_fpgadataflow_fclayer_rtlsim(mem_mode, idt, wdt, act, nf, sf, mw, mh): if nf == -1: nf = mh