diff --git a/tests/transformation/test_move_flatten_past_topk.py b/tests/transformation/test_move_flatten_past_topk.py new file mode 100644 index 0000000000000000000000000000000000000000..65da92c22dbe9f6b1c5a49172ffae59fa6e98607 --- /dev/null +++ b/tests/transformation/test_move_flatten_past_topk.py @@ -0,0 +1,89 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +import pytest + +from onnx import TensorProto, helper + +from finn.core.modelwrapper import ModelWrapper +from finn.core.datatype import DataType +import finn.core.data_layout as DataLayout +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.insert_topk import InsertTopK +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_data_layouts import InferDataLayouts +from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames +from finn.transformation.streamline.reorder import MoveFlattenPastTopK +import finn.core.onnx_exec as oxe + +# data layout +@pytest.mark.parametrize("data_layout", [DataLayout.NHWC, DataLayout.NCHW]) +# batch size +@pytest.mark.parametrize("batch_size", [1, 2]) +def test_move_flatten_past_affine(data_layout, batch_size): + if data_layout == DataLayout.NHWC: + ishape = [batch_size, 1, 1, 1024] + oshape = [batch_size, 1024] + else: + ishape = [batch_size, 1024, 1, 1] + oshape = [batch_size, 1024] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape) + + flatten_node = helper.make_node("Flatten", ["inp"], ["outp"]) + + graph = helper.make_graph( + nodes=[flatten_node], name="move-flatten-graph", inputs=[inp], outputs=[outp], + ) + + model = helper.make_model(graph, producer_name="move_flatten_model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", DataType.INT2) + model.set_tensor_layout("inp", data_layout) + model = model.transform(InsertTopK()) + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + model = model.transform(InferDataLayouts()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + + # compare execution before and after transformation + inp_values = gen_finn_dt_tensor(DataType.INT2, ishape) + idict = {model.graph.input[0].name: inp_values} + model_transformed = model.transform(MoveFlattenPastTopK()) + assert oxe.compare_execution(model, model_transformed, idict) + + # depending on data layout check if graph is transformed or not + if data_layout == DataLayout.NHWC: + # check if nodes have new order in transformed graph + assert model.graph != model_transformed.graph + assert model_transformed.graph.node[-1].op_type == "Flatten" + else: + assert model.graph == model_transformed.graph