diff --git a/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py b/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py index 560aa3268339aab5e3d707d766910bf709a21eaf..1afb4aab2b6f8f2de589d3448afd2fca06a287a0 100644 --- a/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py +++ b/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py @@ -57,7 +57,7 @@ class ConvolutionInputGenerator(HLSCustomOp): idt = DataType.BINARY # TODO ensure codegen dir exists - code_gen_dir = self.get_nodeattr("code_gen_dir") + code_gen_dir = self.get_nodeattr("code_gen_dir_npysim") # create a npy file for input of the node inp = context[node.input[0]] @@ -100,7 +100,7 @@ class ConvolutionInputGenerator(HLSCustomOp): ] def read_npy_data(self): - code_gen_dir = self.get_nodeattr("code_gen_dir") + code_gen_dir = self.get_nodeattr("code_gen_dir_npysim") dtype = self.get_input_datatype() if dtype == DataType.BIPOLAR: # use binary for bipolar storage @@ -136,7 +136,7 @@ class ConvolutionInputGenerator(HLSCustomOp): ] def dataoutstrm(self): - code_gen_dir = self.get_nodeattr("code_gen_dir") + code_gen_dir = self.get_nodeattr("code_gen_dir_npysim") dtype = self.get_output_datatype() if dtype == DataType.BIPOLAR: # use binary for bipolar storage diff --git a/tests/fpgadataflow/test_fpgadataflow_convinputgenerator.py b/tests/fpgadataflow/test_fpgadataflow_convinputgenerator.py index cb58f1ef541f24ae0e232c3808cf98022fbc6c64..b23f0297dc60d466b7cc7d6468a29819a651f435 100644 --- a/tests/fpgadataflow/test_fpgadataflow_convinputgenerator.py +++ b/tests/fpgadataflow/test_fpgadataflow_convinputgenerator.py @@ -8,7 +8,7 @@ from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.core.utils import gen_finn_dt_tensor from finn.transformation.fpgadataflow.cleanup import CleanUp -from finn.transformation.fpgadataflow.codegen import CodeGen +from finn.transformation.fpgadataflow.codegen_npysim import CodeGen_npysim from finn.transformation.fpgadataflow.compile import Compile @@ -140,12 +140,11 @@ def test_fpgadataflow_slidingwindow(idt, k, ifm_dim, ifm_ch, stride): ofm_dim = int(((ifm_dim - k) / stride) + 1) x = gen_finn_dt_tensor(idt, (1, ifm_ch, ifm_dim, ifm_dim)) - # x_values = np model = make_single_slidingwindow_modelwrapper( k, ifm_ch, ifm_dim, ofm_dim, simd, stride, idt ) - model = model.transform(CodeGen()) + model = model.transform(CodeGen_npysim()) model = model.transform(Compile()) # prepare input data