From ec56e4bbb9a3fecf50360ba39ffccb3734285164 Mon Sep 17 00:00:00 2001
From: Yaman Umuroglu <maltanar@gmail.com>
Date: Tue, 18 Aug 2020 23:26:10 +0200
Subject: [PATCH] [Test] add end2end tfc-w1a1 test for VitisBuild

---
 tests/end2end/test_vitis_end2end_tfc_w1a1.py | 165 +++++++++++++++++++
 1 file changed, 165 insertions(+)
 create mode 100644 tests/end2end/test_vitis_end2end_tfc_w1a1.py

diff --git a/tests/end2end/test_vitis_end2end_tfc_w1a1.py b/tests/end2end/test_vitis_end2end_tfc_w1a1.py
new file mode 100644
index 000000000..b2b34617a
--- /dev/null
+++ b/tests/end2end/test_vitis_end2end_tfc_w1a1.py
@@ -0,0 +1,165 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import os
+
+
+import pytest
+
+
+# as of Feb'20 there is a bug that segfaults ONNX shape inference if we
+# import pytorch before onnx, so we make sure to import onnx first
+import onnx  # NOQA
+
+
+import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
+import finn.transformation.streamline.absorb as absorb
+
+from finn.custom_op.registry import getCustomOp
+from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
+from finn.transformation.fold_constants import FoldConstants
+
+from finn.transformation.fpgadataflow.create_dataflow_partition import (
+    CreateDataflowPartition,
+)
+
+from finn.transformation.general import (
+    RemoveUnusedTensors,
+    RemoveStaticGraphInputs,
+    GiveReadableTensorNames,
+    GiveUniqueNodeNames,
+)
+from finn.transformation.infer_datatypes import InferDataTypes
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.streamline import Streamline
+from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds
+from finn.util.basic import alveo_part_map, alveo_default_platform
+from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip
+from finn.transformation.fpgadataflow.vitis_build import VitisBuild
+from finn.transformation.infer_data_layouts import InferDataLayouts
+
+
+build_dir = "/tmp/" + os.environ["FINN_INST_NAME"]
+test_alveo_board = os.getenv("ALVEO_BOARD", default="U250")
+test_fpga_part = alveo_part_map[test_alveo_board]
+test_platform = alveo_default_platform[test_alveo_board]
+target_clk_ns = 10
+mem_mode = "decoupled"
+
+
+def test_end2end_vitis_tfc_w1a1_export():
+    import brevitas.onnx as bo
+
+    tfc = get_test_model_trained("TFC", 1, 1)
+    bo.export_finn_onnx(
+        tfc, (1, 1, 28, 28), build_dir + "/end2end_vitis_tfc_w1a1_export.onnx"
+    )
+
+
+def test_end2end_vitis_tfc_w1a1_import_and_tidy():
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_export.onnx"
+    )
+    model = model.transform(InferShapes())
+    model = model.transform(FoldConstants())
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(GiveReadableTensorNames())
+    model = model.transform(InferDataTypes())
+    model = model.transform(RemoveStaticGraphInputs())
+    model.save(build_dir + "/end2end_vitis_tfc_w1a1_tidy.onnx")
+
+
+def test_end2end_vitis_tfc_w1a1_streamline():
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_tidy.onnx"
+    )
+    model = model.transform(Streamline())
+    model = model.transform(RemoveUnusedTensors())
+    model.save(build_dir + "/end2end_vitis_tfc_w1a1_streamlined.onnx")
+
+
+def test_end2end_vitis_tfc_w1a1_convert_to_hls_layers():
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_streamlined.onnx"
+    )
+    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
+    model = model.transform(absorb.AbsorbAddIntoMultiThreshold())
+    model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
+    model = model.transform(RoundAndClipThresholds())
+    model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode))
+    model = model.transform(InferDataLayouts())
+    model.save(build_dir + "/end2end_vitis_tfc_w1a1_hls_layers.onnx")
+
+
+def test_end2end_vitis_tfc_w1a1_create_dataflow_partition():
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_hls_layers.onnx"
+    )
+    parent_model = model.transform(CreateDataflowPartition())
+    parent_model.save(build_dir + "/end2end_vitis_tfc_w1a1_dataflow_parent.onnx")
+    sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0]
+    sdp_node = getCustomOp(sdp_node)
+    dataflow_model_filename = sdp_node.get_nodeattr("model")
+    dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename)
+    dataflow_model.save(build_dir + "/end2end_vitis_tfc_w1a1_dataflow_model.onnx")
+
+
+def test_end2end_vitis_tfc_w1a1_fold():
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_dataflow_model.onnx"
+    )
+    fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch")
+    # (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer
+    config = [
+        (16, 49, 16, 64, "block"),
+        (8, 8, 64, 64, "auto"),
+        (8, 8, 64, 64, "auto"),
+        (10, 8, 64, 10, "distributed"),
+    ]
+    for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config):
+        fcl_inst = getCustomOp(fcl)
+        fcl_inst.set_nodeattr("PE", pe)
+        fcl_inst.set_nodeattr("SIMD", simd)
+        fcl_inst.set_nodeattr("inFIFODepth", ififo)
+        fcl_inst.set_nodeattr("outFIFODepth", ofifo)
+        fcl_inst.set_nodeattr("ram_style", ramstyle)
+
+    model.save(build_dir + "/end2end_vitis_tfc_w1a1_folded.onnx")
+
+
+@pytest.mark.slow
+@pytest.mark.vitis
+def test_end2end_vitis_tfc_w1a1_build():
+    if "VITIS_PATH" not in os.environ:
+        pytest.skip("VITIS_PATH not set")
+    model = load_test_checkpoint_or_skip(
+        build_dir + "/end2end_vitis_tfc_w1a1_folded.onnx"
+    )
+    model = model.transform(VitisBuild(test_fpga_part, target_clk_ns, test_platform))
+    # TODO post-synth resources
+    model.save(build_dir + "/end2end_vitis_tfc_w1a1_build.onnx")
-- 
GitLab