From ec56e4bbb9a3fecf50360ba39ffccb3734285164 Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Tue, 18 Aug 2020 23:26:10 +0200 Subject: [PATCH] [Test] add end2end tfc-w1a1 test for VitisBuild --- tests/end2end/test_vitis_end2end_tfc_w1a1.py | 165 +++++++++++++++++++ 1 file changed, 165 insertions(+) create mode 100644 tests/end2end/test_vitis_end2end_tfc_w1a1.py diff --git a/tests/end2end/test_vitis_end2end_tfc_w1a1.py b/tests/end2end/test_vitis_end2end_tfc_w1a1.py new file mode 100644 index 000000000..b2b34617a --- /dev/null +++ b/tests/end2end/test_vitis_end2end_tfc_w1a1.py @@ -0,0 +1,165 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os + + +import pytest + + +# as of Feb'20 there is a bug that segfaults ONNX shape inference if we +# import pytorch before onnx, so we make sure to import onnx first +import onnx # NOQA + + +import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls +import finn.transformation.streamline.absorb as absorb + +from finn.custom_op.registry import getCustomOp +from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount +from finn.transformation.fold_constants import FoldConstants + +from finn.transformation.fpgadataflow.create_dataflow_partition import ( + CreateDataflowPartition, +) + +from finn.transformation.general import ( + RemoveUnusedTensors, + RemoveStaticGraphInputs, + GiveReadableTensorNames, + GiveUniqueNodeNames, +) +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline import Streamline +from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds +from finn.util.basic import alveo_part_map, alveo_default_platform +from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip +from finn.transformation.fpgadataflow.vitis_build import VitisBuild +from finn.transformation.infer_data_layouts import InferDataLayouts + + +build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] +test_alveo_board = os.getenv("ALVEO_BOARD", default="U250") +test_fpga_part = alveo_part_map[test_alveo_board] +test_platform = alveo_default_platform[test_alveo_board] +target_clk_ns = 10 +mem_mode = "decoupled" + + +def test_end2end_vitis_tfc_w1a1_export(): + import brevitas.onnx as bo + + tfc = get_test_model_trained("TFC", 1, 1) + bo.export_finn_onnx( + tfc, (1, 1, 28, 28), build_dir + "/end2end_vitis_tfc_w1a1_export.onnx" + ) + + +def test_end2end_vitis_tfc_w1a1_import_and_tidy(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_export.onnx" + ) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataTypes()) + model = model.transform(RemoveStaticGraphInputs()) + model.save(build_dir + "/end2end_vitis_tfc_w1a1_tidy.onnx") + + +def test_end2end_vitis_tfc_w1a1_streamline(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_tidy.onnx" + ) + model = model.transform(Streamline()) + model = model.transform(RemoveUnusedTensors()) + model.save(build_dir + "/end2end_vitis_tfc_w1a1_streamlined.onnx") + + +def test_end2end_vitis_tfc_w1a1_convert_to_hls_layers(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_streamlined.onnx" + ) + model = model.transform(ConvertBipolarMatMulToXnorPopcount()) + model = model.transform(absorb.AbsorbAddIntoMultiThreshold()) + model = model.transform(absorb.AbsorbMulIntoMultiThreshold()) + model = model.transform(RoundAndClipThresholds()) + model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode)) + model = model.transform(InferDataLayouts()) + model.save(build_dir + "/end2end_vitis_tfc_w1a1_hls_layers.onnx") + + +def test_end2end_vitis_tfc_w1a1_create_dataflow_partition(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_hls_layers.onnx" + ) + parent_model = model.transform(CreateDataflowPartition()) + parent_model.save(build_dir + "/end2end_vitis_tfc_w1a1_dataflow_parent.onnx") + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + dataflow_model_filename = sdp_node.get_nodeattr("model") + dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename) + dataflow_model.save(build_dir + "/end2end_vitis_tfc_w1a1_dataflow_model.onnx") + + +def test_end2end_vitis_tfc_w1a1_fold(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_dataflow_model.onnx" + ) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + # (PE, SIMD, in_fifo_depth, out_fifo_depth, ramstyle) for each layer + config = [ + (16, 49, 16, 64, "block"), + (8, 8, 64, 64, "auto"), + (8, 8, 64, 64, "auto"), + (10, 8, 64, 10, "distributed"), + ] + for fcl, (pe, simd, ififo, ofifo, ramstyle) in zip(fc_layers, config): + fcl_inst = getCustomOp(fcl) + fcl_inst.set_nodeattr("PE", pe) + fcl_inst.set_nodeattr("SIMD", simd) + fcl_inst.set_nodeattr("inFIFODepth", ififo) + fcl_inst.set_nodeattr("outFIFODepth", ofifo) + fcl_inst.set_nodeattr("ram_style", ramstyle) + + model.save(build_dir + "/end2end_vitis_tfc_w1a1_folded.onnx") + + +@pytest.mark.slow +@pytest.mark.vitis +def test_end2end_vitis_tfc_w1a1_build(): + if "VITIS_PATH" not in os.environ: + pytest.skip("VITIS_PATH not set") + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_tfc_w1a1_folded.onnx" + ) + model = model.transform(VitisBuild(test_fpga_part, target_clk_ns, test_platform)) + # TODO post-synth resources + model.save(build_dir + "/end2end_vitis_tfc_w1a1_build.onnx") -- GitLab