diff --git a/tests/test_layer_streaming_fclayer_batch.py b/tests/test_layer_streaming_fclayer_batch.py deleted file mode 100644 index 06fb9a8f1d761a519030b9336c093445ea2a7ea6..0000000000000000000000000000000000000000 --- a/tests/test_layer_streaming_fclayer_batch.py +++ /dev/null @@ -1,66 +0,0 @@ -# import onnx -import numpy as np -from onnx import TensorProto, helper - -import finn.core.onnx_exec as oxe -from finn.core.datatype import DataType -from finn.core.modelwrapper import ModelWrapper - - -def test_fclayer_batch(): - inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 2, 8]) - outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 4, 4]) - - FCLayer_node = helper.make_node( - "StreamingFCLayer_Batch", - ["inp", "weights", "thresh"], - ["outp"], - domain="finn", - backend="fpgadataflow", - resType="ap_resource_lut()", - MW=16, - MH=16, - SIMD=8, - PE=4, - resDataType="Recast<XnorMul>", - ) - - graph = helper.make_graph( - nodes=[FCLayer_node], - name="fclayer_graph", - inputs=[inp], - outputs=[outp], - value_info=[ - helper.make_tensor_value_info("weights", TensorProto.FLOAT, [8, 4, 16]), - helper.make_tensor_value_info("thresh", TensorProto.FLOAT, [16, 4, 3]), - ], - ) - - model = helper.make_model(graph, producer_name="fclayer-model") - model = ModelWrapper(model) - - # set the tensor datatypes (in this case: all to bipolar) - for tensor in graph.input: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - for tensor in graph.output: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - - # onnx.save(model.model, "fclayer-model.onnx") - - # generate input data - input_tensor = np.random.randint(2, size=16) - input_tensor = (np.asarray(input_tensor, dtype=np.float32)).reshape(1, 2, 8) - input_dict = {"inp": input_tensor} - - # generate weights - weights_tensor = np.random.randint(2, size=512) - weights_tensor = (np.asarray(weights_tensor, dtype=np.float32)).reshape(8, 4, 16) - input_dict["weights"] = weights_tensor - - # generate threshold activation - thresh_tensor = np.random.randint(2, size=192) - thresh_tensor = (np.asarray(thresh_tensor, dtype=np.float32)).reshape(16, 4, 3) - input_dict["thresh"] = thresh_tensor - - output_dict = oxe.execute_onnx(model, input_dict) - print(output_dict) diff --git a/tests/test_layer_streaming_maxpool.py b/tests/test_layer_streaming_maxpool.py deleted file mode 100644 index 4c9806a3571a5455fed23febf816b7e94a47c188..0000000000000000000000000000000000000000 --- a/tests/test_layer_streaming_maxpool.py +++ /dev/null @@ -1,80 +0,0 @@ -# import onnx -import numpy as np -from onnx import TensorProto, helper - -import finn.core.onnx_exec as oxe -from finn.core.datatype import DataType -from finn.core.modelwrapper import ModelWrapper - - -def test_layer_streaming_maxpool(): - inp = helper.make_tensor_value_info("in", TensorProto.FLOAT, [2, 4, 4]) - outp = helper.make_tensor_value_info("out", TensorProto.FLOAT, [2, 2, 2]) - - MaxPool_node = helper.make_node( - "StreamingMaxPool", - ["in"], - ["out"], - domain="finn", - backend="fpgadataflow", - ImgDim=4, - PoolDim=2, - NumChannels=2, - ) - - graph = helper.make_graph( - nodes=[MaxPool_node], name="max_pool_graph", inputs=[inp], outputs=[outp], - ) - model = helper.make_model(graph, producer_name="finn-hls-onnx-model") - model = ModelWrapper(model) - - # set the tensor datatypes (in this case: all to bipolar) - for tensor in graph.input: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - for tensor in graph.output: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - - # onnx.save(model.model, "max-pool-model.onnx") - - input_tensor = np.asarray( - [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - ], - dtype=np.float32, - ).reshape(2, 4, 4) - print(input_tensor) - - input_dict = {"in": input_tensor} - output_dict = oxe.execute_onnx(model, input_dict) - print(output_dict) diff --git a/tests/test_layer_streaming_maxpool_batch.py b/tests/test_layer_streaming_maxpool_batch.py deleted file mode 100644 index 75cbd64376055996de58455c1d28530b770500a5..0000000000000000000000000000000000000000 --- a/tests/test_layer_streaming_maxpool_batch.py +++ /dev/null @@ -1,114 +0,0 @@ -import numpy as np -from onnx import TensorProto, helper - -import finn.core.onnx_exec as oxe -from finn.core.datatype import DataType -from finn.core.modelwrapper import ModelWrapper - - -def test_layer_streaming_maxpool_batch(): - inp = helper.make_tensor_value_info("in", TensorProto.FLOAT, [2, 2, 4, 4]) - outp = helper.make_tensor_value_info("out", TensorProto.FLOAT, [2, 2, 2, 2]) - - MaxPool_batch_node = helper.make_node( - "StreamingMaxPool_Batch", - ["in"], - ["out"], - domain="finn", - backend="fpgadataflow", - ImgDim=4, - PoolDim=2, - NumChannels=2, - ) - - graph = helper.make_graph( - nodes=[MaxPool_batch_node], - name="max_pool_batch_graph", - inputs=[inp], - outputs=[outp], - ) - model = helper.make_model(graph, producer_name="finn-hls-onnx-model") - model = ModelWrapper(model) - - # set the tensor datatypes (in this case: all to bipolar) - for tensor in graph.input: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - for tensor in graph.output: - model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"]) - - # onnx.save(model.model, "max-pool-model.onnx") - - input_tensor = np.asarray( - [ - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - ], - dtype=np.float32, - ).reshape(2, 2, 4, 4) - print(input_tensor) - - input_dict = {"in": input_tensor} - output_dict = oxe.execute_onnx(model, input_dict) - print(output_dict)