diff --git a/tests/test_layer_streaming_fclayer_batch.py b/tests/test_layer_streaming_fclayer_batch.py
deleted file mode 100644
index 06fb9a8f1d761a519030b9336c093445ea2a7ea6..0000000000000000000000000000000000000000
--- a/tests/test_layer_streaming_fclayer_batch.py
+++ /dev/null
@@ -1,66 +0,0 @@
-# import onnx
-import numpy as np
-from onnx import TensorProto, helper
-
-import finn.core.onnx_exec as oxe
-from finn.core.datatype import DataType
-from finn.core.modelwrapper import ModelWrapper
-
-
-def test_fclayer_batch():
-    inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 2, 8])
-    outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 4, 4])
-
-    FCLayer_node = helper.make_node(
-        "StreamingFCLayer_Batch",
-        ["inp", "weights", "thresh"],
-        ["outp"],
-        domain="finn",
-        backend="fpgadataflow",
-        resType="ap_resource_lut()",
-        MW=16,
-        MH=16,
-        SIMD=8,
-        PE=4,
-        resDataType="Recast<XnorMul>",
-    )
-
-    graph = helper.make_graph(
-        nodes=[FCLayer_node],
-        name="fclayer_graph",
-        inputs=[inp],
-        outputs=[outp],
-        value_info=[
-            helper.make_tensor_value_info("weights", TensorProto.FLOAT, [8, 4, 16]),
-            helper.make_tensor_value_info("thresh", TensorProto.FLOAT, [16, 4, 3]),
-        ],
-    )
-
-    model = helper.make_model(graph, producer_name="fclayer-model")
-    model = ModelWrapper(model)
-
-    # set the tensor datatypes (in this case: all to bipolar)
-    for tensor in graph.input:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-    for tensor in graph.output:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-
-    # onnx.save(model.model, "fclayer-model.onnx")
-
-    # generate input data
-    input_tensor = np.random.randint(2, size=16)
-    input_tensor = (np.asarray(input_tensor, dtype=np.float32)).reshape(1, 2, 8)
-    input_dict = {"inp": input_tensor}
-
-    # generate weights
-    weights_tensor = np.random.randint(2, size=512)
-    weights_tensor = (np.asarray(weights_tensor, dtype=np.float32)).reshape(8, 4, 16)
-    input_dict["weights"] = weights_tensor
-
-    # generate threshold activation
-    thresh_tensor = np.random.randint(2, size=192)
-    thresh_tensor = (np.asarray(thresh_tensor, dtype=np.float32)).reshape(16, 4, 3)
-    input_dict["thresh"] = thresh_tensor
-
-    output_dict = oxe.execute_onnx(model, input_dict)
-    print(output_dict)
diff --git a/tests/test_layer_streaming_maxpool.py b/tests/test_layer_streaming_maxpool.py
deleted file mode 100644
index 4c9806a3571a5455fed23febf816b7e94a47c188..0000000000000000000000000000000000000000
--- a/tests/test_layer_streaming_maxpool.py
+++ /dev/null
@@ -1,80 +0,0 @@
-# import onnx
-import numpy as np
-from onnx import TensorProto, helper
-
-import finn.core.onnx_exec as oxe
-from finn.core.datatype import DataType
-from finn.core.modelwrapper import ModelWrapper
-
-
-def test_layer_streaming_maxpool():
-    inp = helper.make_tensor_value_info("in", TensorProto.FLOAT, [2, 4, 4])
-    outp = helper.make_tensor_value_info("out", TensorProto.FLOAT, [2, 2, 2])
-
-    MaxPool_node = helper.make_node(
-        "StreamingMaxPool",
-        ["in"],
-        ["out"],
-        domain="finn",
-        backend="fpgadataflow",
-        ImgDim=4,
-        PoolDim=2,
-        NumChannels=2,
-    )
-
-    graph = helper.make_graph(
-        nodes=[MaxPool_node], name="max_pool_graph", inputs=[inp], outputs=[outp],
-    )
-    model = helper.make_model(graph, producer_name="finn-hls-onnx-model")
-    model = ModelWrapper(model)
-
-    # set the tensor datatypes (in this case: all to bipolar)
-    for tensor in graph.input:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-    for tensor in graph.output:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-
-    # onnx.save(model.model, "max-pool-model.onnx")
-
-    input_tensor = np.asarray(
-        [
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-        ],
-        dtype=np.float32,
-    ).reshape(2, 4, 4)
-    print(input_tensor)
-
-    input_dict = {"in": input_tensor}
-    output_dict = oxe.execute_onnx(model, input_dict)
-    print(output_dict)
diff --git a/tests/test_layer_streaming_maxpool_batch.py b/tests/test_layer_streaming_maxpool_batch.py
deleted file mode 100644
index 75cbd64376055996de58455c1d28530b770500a5..0000000000000000000000000000000000000000
--- a/tests/test_layer_streaming_maxpool_batch.py
+++ /dev/null
@@ -1,114 +0,0 @@
-import numpy as np
-from onnx import TensorProto, helper
-
-import finn.core.onnx_exec as oxe
-from finn.core.datatype import DataType
-from finn.core.modelwrapper import ModelWrapper
-
-
-def test_layer_streaming_maxpool_batch():
-    inp = helper.make_tensor_value_info("in", TensorProto.FLOAT, [2, 2, 4, 4])
-    outp = helper.make_tensor_value_info("out", TensorProto.FLOAT, [2, 2, 2, 2])
-
-    MaxPool_batch_node = helper.make_node(
-        "StreamingMaxPool_Batch",
-        ["in"],
-        ["out"],
-        domain="finn",
-        backend="fpgadataflow",
-        ImgDim=4,
-        PoolDim=2,
-        NumChannels=2,
-    )
-
-    graph = helper.make_graph(
-        nodes=[MaxPool_batch_node],
-        name="max_pool_batch_graph",
-        inputs=[inp],
-        outputs=[outp],
-    )
-    model = helper.make_model(graph, producer_name="finn-hls-onnx-model")
-    model = ModelWrapper(model)
-
-    # set the tensor datatypes (in this case: all to bipolar)
-    for tensor in graph.input:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-    for tensor in graph.output:
-        model.set_tensor_datatype(tensor.name, DataType["BIPOLAR"])
-
-    # onnx.save(model.model, "max-pool-model.onnx")
-
-    input_tensor = np.asarray(
-        [
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            0,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-            1,
-        ],
-        dtype=np.float32,
-    ).reshape(2, 2, 4, 4)
-    print(input_tensor)
-
-    input_dict = {"in": input_tensor}
-    output_dict = oxe.execute_onnx(model, input_dict)
-    print(output_dict)