From e78fc7c052226b8f2b02d061863c9a8b29060fa8 Mon Sep 17 00:00:00 2001 From: Mirzam98 <mmrahorovic@hotmail.com> Date: Fri, 30 Apr 2021 01:01:54 +0200 Subject: [PATCH] [tests]: added test case for 1D convolution and modified existing test case --- .../test_convert_to_hls_1d_conv_layer.py | 189 ++++++++++++++++++ .../test_depthwise_convolution.py | 4 +- 2 files changed, 191 insertions(+), 2 deletions(-) create mode 100644 tests/fpgadataflow/test_convert_to_hls_1d_conv_layer.py diff --git a/tests/fpgadataflow/test_convert_to_hls_1d_conv_layer.py b/tests/fpgadataflow/test_convert_to_hls_1d_conv_layer.py new file mode 100644 index 000000000..dfdb21fa7 --- /dev/null +++ b/tests/fpgadataflow/test_convert_to_hls_1d_conv_layer.py @@ -0,0 +1,189 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from onnx import TensorProto, helper +import numpy as np +import pytest + +from finn.core.datatype import DataType +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul + +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +import finn.core.onnx_exec as oxe +from finn.core.modelwrapper import ModelWrapper +from finn.util.basic import gen_finn_dt_tensor +import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls + +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.custom_op.general.im2col import compute_conv_output_dim +from finn.custom_op.registry import getCustomOp +from finn.analysis.fpgadataflow.exp_cycles_per_layer import exp_cycles_per_layer + + +# conv_config: +# [pad_h_begin, pad_w_begin, pad_h_end, pad_w_end] +# [kernel_size_h, kernel_size_w] +# [stride_h, stride_w] +# [dilation_h, dilation_w] +@pytest.mark.parametrize( + "conv_config", + [ + [[0, 0, 0, 0], [4, 1], [1, 1], [1, 1]], + [[1, 0, 1, 0], [4, 1], [1, 1], [1, 1]], + [[1, 0, 1, 0], [4, 1], [2, 1], [1, 1]], + # [[1, 0, 1, 0], [4, 1], [1, 1], [2, 1]] + ], +) +@pytest.mark.parametrize("depthwise", [False, True]) +@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +@pytest.mark.slow +@pytest.mark.vivado +def test_convert_to_hls_1d_conv_layer(conv_config, depthwise, exec_mode): + pad, kernel_size, stride, dilation = conv_config + np.random.seed(0) + idt = DataType.UINT4 + + in_feature_dim_h, in_feature_dim_w = [10, 1] + in_chn = 16 + + k_h, k_w = kernel_size + stride_h, stride_w = stride + dilation_h, dilation_w = dilation + pad_h = pad[0] + pad[2] + pad_w = pad[1] + pad[3] + + if depthwise is True: + group = out_chn = in_chn + conv_param_shape = [out_chn, 1, k_h, k_w] + else: + group = 1 + out_chn = 20 + conv_param_shape = [out_chn, in_chn, k_h, k_w] + + out_feature_dim_h = compute_conv_output_dim( + in_feature_dim_h, k_h, stride_h, pad_h, dilation_h + ) + out_feature_dim_w = compute_conv_output_dim( + in_feature_dim_w, k_w, stride_w, pad_w, dilation_w + ) + + input_shape = [1, in_chn, in_feature_dim_h, in_feature_dim_w] + output_shape = [1, out_chn, out_feature_dim_h, out_feature_dim_w] + + conv_weight_dt = DataType.UINT4 + + conv_config = {} + conv_config["dilations"] = [dilation_h, dilation_w] + conv_config["group"] = group + conv_config["kernel_shape"] = [k_h, k_w] + conv_config["pads"] = pad + conv_config["strides"] = [stride_h, stride_w] + + top_in = helper.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = helper.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape) + value_info = [ + helper.make_tensor_value_info("p1", TensorProto.FLOAT, conv_param_shape) + ] + + modelproto = helper.make_model( + helper.make_graph( + name="conv_test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + helper.make_node("Conv", ["top_in", "p1"], ["top_out"], **conv_config) + ], + ) + ) + + model = ModelWrapper(modelproto) + model.set_tensor_datatype("top_in", idt) + model.set_tensor_datatype("top_out", idt) + model.set_tensor_datatype("p1", conv_weight_dt) + model.set_initializer("p1", gen_finn_dt_tensor(conv_weight_dt, conv_param_shape)) + + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + + new_model = model.transform(LowerConvsToMatMul()) + new_model = new_model.transform(to_hls.InferConvInpGen()) + if depthwise is True: + new_model = new_model.transform(to_hls.InferVVAU()) + else: + new_model = new_model.transform(to_hls.InferQuantizedStreamingFCLayer()) + fc_node = new_model.get_nodes_by_op_type("StreamingFCLayer_Batch")[0] + fc_inst = getCustomOp(fc_node) + mw = fc_inst.get_nodeattr("MW") + mh = fc_inst.get_nodeattr("MH") + pe_cands = list(filter(lambda x: mh % x == 0, range(2, mh + 1))) + simd_cands = list(filter(lambda x: mw % x == 0, range(2, mw + 1))) + fc_inst.set_nodeattr("PE", pe_cands[0]) + fc_inst.set_nodeattr("SIMD", simd_cands[0]) + + new_model = new_model.transform(GiveUniqueNodeNames()) + new_model = new_model.transform(InferShapes()) + new_model = new_model.transform(InferDataTypes()) + + if exec_mode == "cppsim": + new_model = new_model.transform(PrepareCppSim()) + new_model = new_model.transform(CompileCppSim()) + new_model = new_model.transform(SetExecMode("cppsim")) + elif exec_mode == "rtlsim": + new_model = new_model.transform(SetExecMode("rtlsim")) + new_model = new_model.transform(GiveUniqueNodeNames()) + new_model = new_model.transform(PrepareIP("xc7z020clg400-1", 5)) + new_model = new_model.transform(HLSSynthIP()) + new_model = new_model.transform(PrepareRTLSim()) + else: + raise Exception("Unknown exec_mode") + + x = gen_finn_dt_tensor(idt, input_shape) + inp_dict = {model.graph.input[0].name: x} + assert oxe.compare_execution(model, new_model, inp_dict) + + if pad_h == 1 and pad_w == 1: + padding_node = new_model.get_nodes_by_op_type("FMPadding_Batch")[0] + padding_inst = getCustomOp(padding_node) + assert padding_inst.get_nodeattr("SIMD") == in_chn + + if depthwise is True and exec_mode == "rtlsim": + node = new_model.get_nodes_by_op_type("Vector_Vector_Activate_Batch")[0] + inst = getCustomOp(node) + cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim") + exp_cycles_dict = new_model.analysis(exp_cycles_per_layer) + exp_cycles = exp_cycles_dict[node.name] + assert np.isclose(exp_cycles, cycles_rtlsim, atol=11) + assert exp_cycles != 0 diff --git a/tests/fpgadataflow/test_depthwise_convolution.py b/tests/fpgadataflow/test_depthwise_convolution.py index c406d7815..3efeacb6e 100644 --- a/tests/fpgadataflow/test_depthwise_convolution.py +++ b/tests/fpgadataflow/test_depthwise_convolution.py @@ -98,7 +98,7 @@ def set_up_reference_model(act, idt, wdt, k, ifm_dim, ifm_ch, stride, padding): inputs=["inp"], outputs=["im2col_out"], kernel_size=[k, k], - stride=stride, + stride=[stride, stride], pad_amount=[padding, padding, padding, padding], input_shape="(1, {}, {}, {})".format(ifm_dim, ifm_dim, ifm_ch), depthwise=1, @@ -142,7 +142,7 @@ def set_up_reference_model(act, idt, wdt, k, ifm_dim, ifm_ch, stride, padding): W_matrix = W_matrix.reshape(ofm_ch, ifm_ch * k * k) model.set_initializer("W_sparse", W_matrix.T) - sparsity = {"dw": {"kernel_shape": k}} + sparsity = {"dw": {"kernel_shape": [k, k]}} model.set_tensor_sparsity("W_sparse", sparsity) if act is not None: -- GitLab