From e6506dfb152530ced61d1d92667503af74e2b61e Mon Sep 17 00:00:00 2001 From: auphelia <jakobapk@web.de> Date: Thu, 18 Jun 2020 17:41:55 +0100 Subject: [PATCH] [Test] Add test for trafo to remove identity ops --- .../test_remove_identity_ops.py | 81 +++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 tests/transformation/test_remove_identity_ops.py diff --git a/tests/transformation/test_remove_identity_ops.py b/tests/transformation/test_remove_identity_ops.py new file mode 100644 index 000000000..536c1ab0b --- /dev/null +++ b/tests/transformation/test_remove_identity_ops.py @@ -0,0 +1,81 @@ +import pytest + +import numpy as np +from onnx import helper, TensorProto +import finn.core.onnx_exec as oxe +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline.remove import RemoveIdentityOps +from finn.util.basic import gen_finn_dt_tensor + + +def insert_identity_op(model, op): + if op in ["Add", "Sub"]: + val = np.asarray([0.0], dtype=np.float32) + elif op in ["Mul", "Div"]: + val = np.asarray([1.0], dtype=np.float32) + else: + return + + identity_node = helper.make_node(op, ["div_out", "value"], ["ident_out"]) + graph = model.graph + graph.node.insert(3, identity_node) + graph.node[-1].input[0] = "ident_out" + model.set_initializer("value", val) + + return model + + +# identity operations to be inserted +@pytest.mark.parametrize("op", ["Add", "Sub", "Mul", "Div"]) +def test_remove_identity_ops(op): + + # set up onnx model + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 4, 1, 1]) + mul = helper.make_tensor_value_info("mul", TensorProto.FLOAT, []) + shape = helper.make_tensor_value_info("shape", TensorProto.FLOAT, [2]) + div = helper.make_tensor_value_info("div", TensorProto.FLOAT, []) + matmul = helper.make_tensor_value_info("matmul", TensorProto.FLOAT, [4, 2]) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, 2]) + + mul_node = helper.make_node("Mul", ["inp", "mul"], ["mul_out"]) + reshape_node = helper.make_node("Reshape", ["mul_out", "shape"], ["reshape_out"]) + div_node = helper.make_node("Div", ["reshape_out", "div"], ["div_out"]) + matmul_node = helper.make_node("MatMul", ["div_out", "matmul"], ["outp"]) + + graph = helper.make_graph( + nodes=[mul_node, reshape_node, div_node, matmul_node], + name="identity-graph", + inputs=[inp], + outputs=[outp], + value_info=[mul, shape, div, matmul], + ) + + model = helper.make_model(graph, producer_name="mulpastconv-model") + model = ModelWrapper(model) + inp_values = gen_finn_dt_tensor(DataType.INT2, [1, 4, 1, 1]) + mul_values = np.random.uniform(low=0.1, high=0.99, size=(1)).astype(np.float32) + shape_values = np.asarray([1, -1], dtype=np.int64) + div_values = np.random.uniform(low=0.1, high=0.99, size=(1)).astype(np.float32) + matmul_values = gen_finn_dt_tensor(DataType.INT2, [4, 2]) + model.set_initializer("mul", mul_values) + model.set_initializer("shape", shape_values) + model.set_initializer("div", div_values) + model.set_initializer("matmul", matmul_values) + insert_identity_op(model, op) + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + idict = {"inp": inp_values} + odict = oxe.execute_onnx(model, idict) + out_before = odict["outp"] + num_of_nodes_before = len(model.graph.node) + + model = model.transform(RemoveIdentityOps()) + num_of_nodes_after = len(model.graph.node) + assert num_of_nodes_before - 1 == num_of_nodes_after + + odict = oxe.execute_onnx(model, idict) + out_after = odict["outp"] + assert (out_before == out_after).all() -- GitLab