diff --git a/tests/fpgadataflow/test_fpgadataflow_fclayer.py b/tests/fpgadataflow/test_fpgadataflow_fclayer.py index 969c72b28dd2b7d42843584c10e0ce7a4b5de5c0..69a6781f985262709f81513e86637d1fbff8cb5a 100644 --- a/tests/fpgadataflow/test_fpgadataflow_fclayer.py +++ b/tests/fpgadataflow/test_fpgadataflow_fclayer.py @@ -136,34 +136,16 @@ def test_fpgadataflow_fclayer_ibp_wbp_noact(): # no act - all signed def test_fpgadataflow_fclayer_ibint2_wbint2_noact(): - mh = 8 - mw = 8 wdt = idt = DataType.INT2 odt = DataType.INT32 - # generate weights - W = gen_FINN_dt_tensor(wdt, [mh, mw]) - # generate input data - x = gen_FINN_dt_tensor(idt, mw) - - # set up layers with different pe and simd - pe_values = [1, int(mh/2), mh] - simd_values = [1, int(mw/2), mw] - for pe in pe_values: - for simd in simd_values: - model = make_single_fclayer_modelwrapper(W, pe, simd, wdt, idt, odt) - # prepare input data - input_dict = prepare_inputs(model, x, idt) + create_noativation_testcases(idt, wdt, odt) - # execute model - produced = oxe.execute_onnx(model, input_dict)["outp"] +# no act - all ternary - # expected output - oshape = model.get_tensor_shape("outp") - y = np.dot(Wb, xb).reshape(oshape.shape) - # XnorMul produces positive outputs only, adjust expectation accordingly - expected = 2 * y - mw - - assert (produced.reshape(expected.shape) == expected).all() +def test_fpgadataflow_fclayer_ibt_wbt_noact(): + wdt = idt = DataType.TERNARY + odt = DataType.INT32 + create_noativation_testcases(idt, wdt, odt)