From dd1348e5d3f062c3818174be610ed02e35b4cf5b Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Wed, 20 May 2020 01:34:39 +0100 Subject: [PATCH] [Transform] introduce the InferDataLayouts transformation --- src/finn/transformation/infer_data_layouts.py | 120 ++++++++++++++++++ 1 file changed, 120 insertions(+) create mode 100644 src/finn/transformation/infer_data_layouts.py diff --git a/src/finn/transformation/infer_data_layouts.py b/src/finn/transformation/infer_data_layouts.py new file mode 100644 index 000000000..bb06f6abc --- /dev/null +++ b/src/finn/transformation/infer_data_layouts.py @@ -0,0 +1,120 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import finn.custom_op.registry as registry +import finn.core.data_layout as DataLayout +from finn.transformation import Transformation +import warnings +from finn.util.basic import get_by_name + + +def _dims_to_layout(node, ndims): + if node.domain == "finn": + if node.op_type == "MultiThreshold": + mt_inst = registry.getCustomOp(node) + layout = mt_inst.get_nodeattr("data_layout") + if ndims == 2: + return DataLayout.NC + elif layout == "NHWC" and ndims == 4: + return DataLayout.NHWC + elif layout == "NCHW" and ndims == 4: + return DataLayout.NCHW + else: + return DataLayout.UNKNOWN + else: + if ndims == 2: + return DataLayout.NC + elif ndims == 4: + return DataLayout.NHWC + else: + return DataLayout.UNKNOWN + else: + if ndims == 2: + return DataLayout.NC + elif ndims == 4: + return DataLayout.NCHW + else: + return DataLayout.UNKNOWN + + +def _infer_node_data_layout(model, node): + """Infer output data layout annotation(s) for a particular node. + Returns True if any changes were made.""" + old_layouts = list(map(lambda x: model.get_tensor_layout(x), node.output)) + if node.domain == "finn": + # try to guess based on number of output dims + for o in node.output: + ndims = len(model.get_tensor_shape(o)) + new_layout = _dims_to_layout(node, ndims) + model.set_tensor_layout(o, new_layout) + else: + if node.op_type == "Transpose": + # grab input annotation and switch it around using perm + perm = get_by_name(node.attribute, "perm").ints + inp_layout = model.get_tensor_layout(node.input[0]) + out_layout = [x for _, x in sorted(zip(perm, inp_layout))] + model.set_tensor_layout(node.output[0], out_layout) + else: + # try to guess based on number of output dims + for o in node.output: + ndims = len(model.get_tensor_shape(o)) + model.set_tensor_layout(o, _dims_to_layout(node, ndims)) + # compare old and new output dtypes to see if anything changed + new_layouts = list(map(lambda x: model.get_tensor_layout(x), node.output)) + graph_modified = new_layouts != old_layouts + return graph_modified + + +class InferDataLayouts(Transformation): + """Try to infer data layout annotations info for all input/intermediate/output + tensors based on inputs and node type.""" + + def apply(self, model): + graph = model.graph + graph_modified = False + # first, make sure that the global input has an annotation + # this is really hard to do in general, so we do some bad guesswork + inp_name = graph.input[0].name + if model.get_tensor_layout(inp_name) is None: + inp_shape = model.get_tensor_shape(inp_name) + if len(inp_shape) == 4: + warnings.warn("Assuming 4D input is NCHW") + model.set_tensor_layout(inp_name, DataLayout.NCHW) + graph_modified = True + elif len(inp_shape) == 2: + graph_modified = True + warnings.warn("Assuming 2D input is NC") + model.set_tensor_layout(inp_name, DataLayout.NC) + else: + raise Exception( + """Unknown number of dims for input, don't know + how to annotate""" + ) + for node in graph.node: + graph_modified |= _infer_node_data_layout(model, node) + return (model, graph_modified) -- GitLab