diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index a7c31cb3e995080680fdd75beec0122c4c6c073f..983b1b8fa681ac64e5b82839441b71a5d6a38c4a 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -280,13 +280,13 @@ class StreamingFCLayer_Batch(HLSCustomOp): out_hls_str = self.get_output_datatype().get_hls_datatype_str() wt_hls_str = self.get_weight_datatype().get_hls_datatype_str() inp_is_binary = self.get_input_datatype() == DataType.BINARY - out_is_binary = self.get_output_datatype() == DataType.BINARY + # out_is_binary = self.get_output_datatype() == DataType.BINARY wt_is_binary = self.get_weight_datatype() == DataType.BINARY bin_xnor_mode = self.get_nodeattr("binaryXnorMode") == 1 if (inp_is_binary or wt_is_binary) and (not bin_xnor_mode): raise Exception("True binary (non-bipolar) inputs not yet supported") inp_is_bipolar = self.get_input_datatype() == DataType.BIPOLAR - out_is_bipolar = self.get_output_datatype() == DataType.BIPOLAR + # out_is_bipolar = self.get_output_datatype() == DataType.BIPOLAR wt_is_bipolar = self.get_weight_datatype() == DataType.BIPOLAR # reinterpret inp/wt as bipolar if bin_xnor_mode is iset inp_is_bipolar = inp_is_bipolar or (inp_is_binary and bin_xnor_mode) @@ -312,19 +312,19 @@ class StreamingFCLayer_Batch(HLSCustomOp): elif mem_mode == "decoupled": if inp_is_bipolar and wt_is_bipolar: ret["TSrcI"] = "Recast<XnorMul>" - ret["TWeightI"] = "Identity" + ret["TWeightI"] = "Identity" elif (not inp_is_bipolar) and wt_is_bipolar: ret["TSrcI"] = "Slice<%s>" % inp_hls_str ret["TWeightI"] = "Recast<Binary>" - #ret["TWeightI"] = "Recast<Binary>" + # ret["TWeightI"] = "Recast<Binary>" elif inp_is_bipolar and (not wt_is_bipolar): ret["TSrcI"] = "Recast<Binary>" - ret["TWeightI"] = "Slice<%s>" % wt_hls_str - #ret["TWeightI"] = "Slice<%s>" % wt_hls_str + ret["TWeightI"] = "Slice<%s>" % wt_hls_str + # ret["TWeightI"] = "Slice<%s>" % wt_hls_str elif (not inp_is_bipolar) and (not wt_is_bipolar): ret["TSrcI"] = "Slice<%s>" % inp_hls_str ret["TWeightI"] = "Slice<%s>" % wt_hls_str - + # fill in TDstI ret["TDstI"] = "Slice<%s>" % out_hls_str @@ -453,7 +453,9 @@ class StreamingFCLayer_Batch(HLSCustomOp): else: f_weights.write( "static BinaryWeights<{},{},{}> weights = ".format( - self.get_nodeattr("SIMD"), self.get_nodeattr("PE"), self.calc_wmem() + self.get_nodeattr("SIMD"), + self.get_nodeattr("PE"), + self.calc_wmem(), ) ) f_weights.write(weight_hls_code) @@ -469,16 +471,16 @@ class StreamingFCLayer_Batch(HLSCustomOp): # reshape weight tensor to desired shape pe = self.get_nodeattr("PE") simd = self.get_nodeattr("SIMD") - weight_tensor = weight_tensor.reshape(1, -1, pe*simd) + weight_tensor = weight_tensor.reshape(1, -1, pe * simd) weight_tensor = weight_tensor.copy() np.save( - os.path.join(code_gen_dir, "weights.npy"), - weight_tensor, - ) + os.path.join(code_gen_dir, "weights.npy"), weight_tensor, + ) else: - raise Exception("""Please set mem_mode to "const"i or "decoupled", currently no other - parameter value is supported!""") - + raise Exception( + """Please set mem_mode to "const"i or "decoupled", currently no other + parameter value is supported!""" + ) # save thresholds in thresh.h if len(self.onnx_node.input) > 2: @@ -645,20 +647,21 @@ class StreamingFCLayer_Batch(HLSCustomOp): def global_includes(self): self.code_gen_dict["$GLOBALS$"] = ['#include "weights.hpp"'] self.code_gen_dict["$GLOBALS$"] += ['#include "activations.hpp"'] - + mem_mode = self.get_nodeattr("mem_mode") if mem_mode == "const": self.code_gen_dict["$GLOBALS$"] += ['#include "params.h"'] elif mem_mode == "decoupled": self.code_gen_dict["$GLOBALS$"] += ['#include "mvau.hpp"'] else: - raise Exception("""Please set mem_mode to "const" or "decoupled", currently no other - parameter value is supported!""") + raise Exception( + """Please set mem_mode to "const" or "decoupled", currently no other + parameter value is supported!""" + ) if self.calc_tmem() != 0: # TODO find a better way of checking for no pregenerated thresholds self.code_gen_dict["$GLOBALS$"] += ['#include "thresh.h"'] - def defines(self, var): mem_mode = self.get_nodeattr("mem_mode") numReps = 1 @@ -682,9 +685,7 @@ class StreamingFCLayer_Batch(HLSCustomOp): if mem_mode == "decoupled": wdt = self.get_weight_datatype() self.code_gen_dict["$DEFINES$"].append( - "#define WP1 {}\n".format( - wdt.bitwidth() - ) + "#define WP1 {}\n".format(wdt.bitwidth()) ) def read_npy_data(self): @@ -734,10 +735,9 @@ class StreamingFCLayer_Batch(HLSCustomOp): if mem_mode == "decoupled": self.code_gen_dict["$STREAMDECLARATIONS$"].append( 'hls::stream<ap_uint<{}>> weights ("weights");'.format( - self.get_weightstream_width() + self.get_weightstream_width() ) ) - def docompute(self): mem_mode = self.get_nodeattr("mem_mode") @@ -770,13 +770,13 @@ class StreamingFCLayer_Batch(HLSCustomOp): threshs, self.get_nodeattr("resType"), ) - ] + ] else: - raise Exception("""Please set mem_mode to "const" or "decoupled", currently no other - parameter value is supported!""") - - + raise Exception( + """Please set mem_mode to "const" or "decoupled", currently no other + parameter value is supported!""" + ) def dataoutstrm(self): code_gen_dir = self.get_nodeattr("code_gen_dir_npysim") @@ -823,14 +823,18 @@ class StreamingFCLayer_Batch(HLSCustomOp): ) ] else: - raise Exception("""Please set mem_mode to "const", currently no other - parameter value is supported!""") + raise Exception( + """Please set mem_mode to "const", currently no other + parameter value is supported!""" + ) def pragmas(self): mem_mode = self.get_nodeattr("mem_mode") if mem_mode == "const": self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] - self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE axis port=out" + ) in_fifo_depth = self.get_nodeattr("inFIFODepth") out_fifo_depth = self.get_nodeattr("outFIFODepth") # insert depth pragmas only if specified @@ -854,7 +858,8 @@ class StreamingFCLayer_Batch(HLSCustomOp): ) ) # the threshold tensor is acc_type [PE][TMEM][N_THRES] - # partition for parallel access along PE and N_THRES dimensions (dims 1 and 3) + # partition for parallel access along PE and N_THRES + # dimensions (dims 1 and 3) if self.calc_tmem() != 0: # TODO find a better way of checking for no pregenerated thresholds self.code_gen_dict["$PRAGMAS$"].append( @@ -870,5 +875,7 @@ class StreamingFCLayer_Batch(HLSCustomOp): ) ) else: - raise Exception("""Please set mem_mode to "const", currently no other - parameter value is supported!""") + raise Exception( + """Please set mem_mode to "const", currently no other + parameter value is supported!""" + ) diff --git a/tests/fpgadataflow/test_fpgadataflow_fclayer.py b/tests/fpgadataflow/test_fpgadataflow_fclayer.py index c53b735dd92eb2b700846aa0526f193059e0fef2..4201f64c963cb506305fd9b9a9fa32f66ae74226 100644 --- a/tests/fpgadataflow/test_fpgadataflow_fclayer.py +++ b/tests/fpgadataflow/test_fpgadataflow_fclayer.py @@ -27,7 +27,6 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest -import csv import numpy as np from onnx import TensorProto, helper @@ -131,7 +130,7 @@ def prepare_inputs(input_tensor, idt, wdt): # mem_mode: const or decoupled -@pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) +@pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) # activation: None or DataType @pytest.mark.parametrize("act", [None, DataType.BIPOLAR, DataType.INT2]) # weight datatype @@ -209,8 +208,8 @@ def test_fpgadataflow_fclayer_npysim(mem_mode, idt, wdt, act, nf, sf, mw, mh): y_expected = y.reshape(oshape) # execute model y_produced = oxe.execute_onnx(model, input_dict)["outp"] - - y_produced =y_produced.reshape(y_expected.shape) + + y_produced = y_produced.reshape(y_expected.shape) assert (y_produced == y_expected).all(), "npysim failed"