diff --git a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py index d2e1406d2c4f77e28ee11573cd67831a62b97564..6fbf176d4c80d5b5cd6caac294e131ec1a515438 100755 --- a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py @@ -35,6 +35,9 @@ from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp from finn.custom_op.general.maxpoolnhwc import compute_pool_output_dim from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy +# TODO: consider splitting this into separate implementations for 1D and 2D +# similar to what we do for ConvolutionInputGenerator + class StreamingMaxPool_Batch(HLSCustomOp): """Class that corresponds to finn-hlslib StreamingMaxPool_batch function.""" @@ -44,7 +47,9 @@ class StreamingMaxPool_Batch(HLSCustomOp): "ImgDim": ("ints", True, []), # [H, W] = [Y, X] "PoolDim": ("ints", True, []), # [H, W] = [Y, X] "NumChannels": ("i", True, 0), - "PE": ("i", True, 0), + # parallelism control - only supported for 1D maxpool + "PE": ("i", False, 0), + # round up (instead of down) output size - only supported for 1D maxpool "CeilMode": ("i", False, 0), # FINN DataTypes for inputs/outputs "dataType": ("s", True, ""),