diff --git a/src/finn/transformation/fpgadataflow/set_folding.py b/src/finn/transformation/fpgadataflow/set_folding.py index 758b7efd6dc5c63fc95c3dbddf9205a404882346..617c9f431bc8ecd08e429fd7c10b56d65d374e39 100644 --- a/src/finn/transformation/fpgadataflow/set_folding.py +++ b/src/finn/transformation/fpgadataflow/set_folding.py @@ -104,7 +104,12 @@ class SetFolding(Transformation): ] # these ops use SIMD parallelism, up to a max value of NumChannels # ConvolutionInputGenerator has a special case when depthwise=1 - simd_ops = ["DownSampler", "FMPadding_Batch", "ConvolutionInputGenerator"] + simd_ops = [ + "DownSampler", + "FMPadding_Batch", + "ConvolutionInputGenerator", + "ConvolutionInputGenerator1D", + ] # these ops are preceded by depthwise SWG and have special behavior, # as explained in the SetFolding docstring depthwise_op_exceptions = ["Vector_Vector_Activate_Batch", "Pool_Batch"] @@ -166,7 +171,10 @@ class SetFolding(Transformation): "Expected SWU on DW op input, found " + swu_node.op_type ) elif op_type in simd_ops: - if op_type == "ConvolutionInputGenerator": + if op_type in [ + "ConvolutionInputGenerator", + "ConvolutionInputGenerator1D", + ]: depthwise = node_inst.get_nodeattr("depthwise") if depthwise == 0: max_simd = node_inst.get_nodeattr("IFMChannels")