From be3a041880431d2ac5ee330dd9b42c79ae22df18 Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Tue, 3 Dec 2019 00:26:11 +0000 Subject: [PATCH] [Refactor] use correct attribute accessors for custom op codegen --- src/finn/custom_op/fpgadataflow/__init__.py | 9 +-- .../fpgadataflow/streamingfclayer_batch.py | 60 ++++++------------- .../fpgadataflow/streamingmaxpool_batch.py | 57 ++++++------------ .../fpgadataflow/code_gen_transformation.py | 52 +++------------- 4 files changed, 46 insertions(+), 132 deletions(-) diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py index f9d2c6ba5..ae8d8aa69 100644 --- a/src/finn/custom_op/fpgadataflow/__init__.py +++ b/src/finn/custom_op/fpgadataflow/__init__.py @@ -1,7 +1,6 @@ from abc import abstractmethod import os from finn.custom_op import CustomOp -import finn.core.utils as util class HLSCustomOp(CustomOp): @@ -37,10 +36,6 @@ class HLSCustomOp(CustomOp): """ self.code_gen_dict = {} - self.tmp_dir = "" - self.code_gen_dir = util.get_by_name(onnx_node.attribute, "code_gen_dir") - self.executable_path = "" - def get_nodeattr_types(self): return {"code_gen_dir": ("s", False, ""), "executable_path": ("s", False, "")} @@ -62,8 +57,8 @@ class HLSCustomOp(CustomOp): # transform list into long string separated by '\n' code_gen_line = "\n".join(self.code_gen_dict[key]) template = template.replace(key, code_gen_line) - - f = open(os.path.join(self.tmp_dir, "execute_{}.cpp".format(node.op_type)), "w") + code_gen_dir = self.get_nodeattr("code_gen_dir") + f = open(os.path.join(code_gen_dir, "execute_{}.cpp".format(node.op_type)), "w") f.write(template) f.close() diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index 3e06a3e51..97831485d 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -1,6 +1,5 @@ import os import subprocess -import tempfile as tmp import numpy as np @@ -151,7 +150,6 @@ class StreamingFCLayer_Batch(HLSCustomOp): return ret def generate_weights(self, model): - weights = model.get_initializer(self.onnx_node.input[1]) # convert weights into hlslib-compatible format weight_tensor = self.get_hls_compatible_weight_tensor(weights) @@ -164,7 +162,8 @@ class StreamingFCLayer_Batch(HLSCustomOp): weight_tensor, export_wdt, "weights", True, True ) # write weights into params.h - f_weights = open("{}/params.h".format(self.tmp_dir), "w") + code_gen_dir = self.get_nodeattr("code_gen_dir") + f_weights = open("{}/params.h".format(code_gen_dir), "w") if export_wdt.bitwidth() != 1: f_weights.write( @@ -200,7 +199,8 @@ class StreamingFCLayer_Batch(HLSCustomOp): threshold_tensor, tdt, "thresholds", False, True ) # write thresholds into thresh.h - f_thresh = open("{}/thresh.h".format(self.tmp_dir), "w") + code_gen_dir = self.get_nodeattr("code_gen_dir") + f_thresh = open("{}/thresh.h".format(code_gen_dir), "w") tdt_hls = tdt.get_hls_datatype_str() odt_hls = self.get_output_datatype().get_hls_datatype_str() f_thresh.write( @@ -218,13 +218,8 @@ class StreamingFCLayer_Batch(HLSCustomOp): def execute_node(self, context, graph): node = self.onnx_node - # make temporary directory for generated files - self.tmp_dir = tmp.mkdtemp(prefix=str(node.op_type) + "_") - - # create empty list for temporary files to enable the option - # to delete the files after the execution - temp_files = [] - + # TODO ensure codegen dir exists + code_gen_dir = self.get_nodeattr("code_gen_dir") # create a npy file fore each input of the node (in_ind is input index) in_ind = 0 for inputs in node.input: @@ -239,48 +234,25 @@ class StreamingFCLayer_Batch(HLSCustomOp): if self.get_input_datatype() == DataType.BIPOLAR: # store bipolar activations as binary np.save( - os.path.join(self.tmp_dir, "input_{}.npy".format(in_ind)), + os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), (context[inputs] + 1) / 2, ) else: np.save( - os.path.join(self.tmp_dir, "input_{}.npy".format(in_ind)), + os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), context[inputs], ) - temp_files.append("{}/input_{}.npy".format(self.tmp_dir, in_ind)) elif in_ind > 2: raise Exception("Unexpected input found for StreamingFCLayer") - in_ind += 1 - - temp_files.append("{}/params.h".format(self.tmp_dir)) - temp_files.append("{}/thresh.h".format(self.tmp_dir)) - - # code generation - self.code_generation(context) - - # c++ compilation and execution flow - temp_files.append("{}/execute_{}.cpp".format(self.tmp_dir, node.op_type)) - bash_compile = """g++ -o {}/execute_{} {}/execute_{}.cpp - /workspace/cnpy/cnpy.cpp -I/workspace/finn/src/finn/data/cpp -I/workspace/cnpy/ - -I/workspace/finn-hlslib -I/workspace/vivado-hlslib - --std=c++11 -lz""".format( - self.tmp_dir, node.op_type, self.tmp_dir, node.op_type - ) - process_compile = subprocess.Popen(bash_compile.split(), stdout=subprocess.PIPE) - process_compile.communicate() - bash_execute = "{}/execute_{}".format(self.tmp_dir, node.op_type) - process_execute = subprocess.Popen(bash_execute.split(), stdout=subprocess.PIPE) + # execute precompiled executable + executable_path = self.get_nodeattr("executable_path") + # TODO sanity check executable + process_execute = subprocess.Popen(executable_path, stdout=subprocess.PIPE) process_execute.communicate() - temp_files.append("{}/execute_{}".format(self.tmp_dir, node.op_type)) - temp_files.append("{}/output.npy".format(self.tmp_dir)) - # load output npy file - output = np.load("{}/output.npy".format(self.tmp_dir)) + output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output - # deleting temporary files - # for temp_file in temp_files: - # os.remove(temp_file) def global_includes(self): self.code_gen_dict["$GLOBALS$"] = ['#include "weights.hpp"'] @@ -309,13 +281,14 @@ class StreamingFCLayer_Batch(HLSCustomOp): ] def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir") dtype = self.get_input_datatype() elem_bits = dtype.bitwidth() packed_bits = self.get_instream_width() packed_hls_type = "ap_uint<%d>" % packed_bits elem_hls_type = dtype.get_hls_datatype_str() npy_type = "float" - npy_in = "%s/input_0.npy" % self.tmp_dir + npy_in = "%s/input_0.npy" % code_gen_dir self.code_gen_dict["$READNPYDATA$"] = [] self.code_gen_dict["$READNPYDATA$"].append( 'npy2apintstream<%s, %s, %d, %s>("%s", in0);' @@ -352,13 +325,14 @@ class StreamingFCLayer_Batch(HLSCustomOp): ] def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir") dtype = self.get_output_datatype() elem_bits = dtype.bitwidth() packed_bits = self.get_outstream_width() packed_hls_type = "ap_uint<%d>" % packed_bits elem_hls_type = dtype.get_hls_datatype_str() npy_type = "float" - npy_out = "%s/output.npy" % self.tmp_dir + npy_out = "%s/output.npy" % code_gen_dir nf = int(self.get_nodeattr("MH") / self.get_nodeattr("PE")) shape = (1, nf, self.get_nodeattr("PE")) shape_cpp_str = str(shape).replace("(", "{").replace(")", "}") diff --git a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py index e21ffeae1..56d43cac7 100644 --- a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py @@ -1,6 +1,5 @@ import os import subprocess -import tempfile as tmp import numpy as np @@ -25,48 +24,26 @@ class StreamingMaxPool_Batch(HLSCustomOp): def execute_node(self, context, graph): node = self.onnx_node - # make temporary directory for generated files - self.tmp_dir = tmp.mkdtemp(prefix=str(node.op_type) + "_") - - # create empty list for temporary files to enable the option - # to delete the files after the execution - temp_files = [] - + code_gen_dir = self.get_nodeattr("code_gen_dir") # create a npy file fore each input of the node (in_ind is input index) in_ind = 0 for inputs in node.input: - np.save( - os.path.join(self.tmp_dir, "input_{}.npy".format(in_ind)), - context[inputs], - ) - temp_files.append("{}/input_{}.npy".format(self.tmp_dir, in_ind)) + if in_ind == 0: + np.save( + os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), + context[inputs], + ) + else: + raise Exception("Unexpected input found for StreamingMaxPool_Batch") in_ind += 1 - - # code generation - self.code_generation() - - # c++ compilation and execution flow - temp_files.append("{}/execute_{}.cpp".format(self.tmp_dir, node.op_type)) - bash_compile = """g++ -o {}/execute_{} {}/execute_{}.cpp - /workspace/cnpy/cnpy.cpp -I/workspace/cnpy/ - -I/workspace/finn-hlslib -I/workspace/vivado-hlslib - --std=c++11 -lz""".format( - self.tmp_dir, node.op_type, self.tmp_dir, node.op_type - ) - process_compile = subprocess.Popen(bash_compile.split(), stdout=subprocess.PIPE) - process_compile.communicate() - bash_execute = "{}/execute_{}".format(self.tmp_dir, node.op_type) - process_execute = subprocess.Popen(bash_execute.split(), stdout=subprocess.PIPE) + # execute precompiled executable + executable_path = self.get_nodeattr("executable_path") + # TODO sanity check executable + process_execute = subprocess.Popen(executable_path, stdout=subprocess.PIPE) process_execute.communicate() - temp_files.append("{}/execute_{}".format(self.tmp_dir, node.op_type)) - temp_files.append("{}/output.npy".format(self.tmp_dir)) - # load output npy file - output = np.load("{}/output.npy".format(self.tmp_dir)) + output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output - # deleting temporary files - # for temp_file in temp_files: - # os.remove(temp_file) def global_includes(self): self.code_gen_dict["$GLOBALS$"] = ['#include "maxpool.h"'] @@ -85,13 +62,14 @@ class StreamingMaxPool_Batch(HLSCustomOp): def read_npy_data(self): node = self.onnx_node + code_gen_dir = self.get_nodeattr("code_gen_dir") # c++ code to read out an npy file # and put it in hls::stream in the correct order self.code_gen_dict["$READNPYDATA$"] = [] input_ind = 0 input_file_names = [] for inputs in node.input: - input_file_names.append("{}/input_{}.npy".format(self.tmp_dir, input_ind)) + input_file_names.append("{}/input_{}.npy".format(code_gen_dir, input_ind)) input_ind += 1 input_ind = 0 @@ -183,11 +161,12 @@ class StreamingMaxPool_Batch(HLSCustomOp): self.code_gen_dict["$DATAOUTSTREAM$"].append("}") def save_as_npy(self): - numReps = 2 + code_gen_dir = self.get_nodeattr("code_gen_dir") + numReps = 1 self.code_gen_dict["$SAVEASCNPY$"] = [ """cnpy::npy_save("{}/output.npy",&output_data_vector[0], {{{},{},{}}},"w");""".format( - self.tmp_dir, + code_gen_dir, numReps, self.get_nodeattr("NumChannels"), int(self.get_nodeattr("ImgDim") / self.get_nodeattr("PoolDim")), diff --git a/src/finn/transformation/fpgadataflow/code_gen_transformation.py b/src/finn/transformation/fpgadataflow/code_gen_transformation.py index 313112690..2aec5a2ea 100644 --- a/src/finn/transformation/fpgadataflow/code_gen_transformation.py +++ b/src/finn/transformation/fpgadataflow/code_gen_transformation.py @@ -6,55 +6,21 @@ from finn.core.utils import get_by_name from finn.transformation import Transformation -def code_gen_transformation(node, model): +def _codegen_single_node(node, model): """Call custom implementation to generate code for single custom node and create folder that contains all the generated files""" op_type = node.op_type try: # lookup op_type in registry of CustomOps inst = registry.custom_op[op_type](node) - # get the path of the code generation directory - code_gen_dir = inst.code_gen_dir - code_gen_dir = code_gen_dir.s.decode("UTF-8") - - # parameter is empty - if not code_gen_dir: - tmp_dir = tmp.mkdtemp(prefix="code_gen_" + str(node.op_type) + "_") - inst.tmp_dir = tmp_dir - inst.code_generation(model) - # check if directory exists - if os.path.isdir(tmp_dir): - if len(os.listdir(tmp_dir)) == 0: - raise Exception("Code was not generated!") - else: - inst.code_gen_dir = tmp_dir - model.set_attribute(node, "code_gen_dir", tmp_dir) - else: - raise Exception("Code was not generated!") - - # there is already a code gen directory - else: - # check directory for files - if os.path.isdir(code_gen_dir): - if len(os.listdir(code_gen_dir)) == 0: - os.rmdir(code_gen_dir) - tmp_dir = tmp.mkdtemp(prefix="code_gen_" + str(node.op_type) + "_") - inst.tmp_dir = tmp_dir - inst.code_generation(model) - if os.path.isdir(tmp_dir): - if len(os.listdir(tmp_dir)) == 0: - raise Exception("Code was not generated!") - else: - inst.code_gen_dir = tmp_dir - model.set_attribute(node, "code_gen_dir", tmp_dir) - else: - raise Exception("Code was not generated!") - # else: attribute is correctly set - else: - inst.code_gen_dir = tmp_dir - model.set_attribute(node, "code_gen_dir", tmp_dir) - + code_gen_dir = inst.get_nodeattr("code_gen_dir") + # ensure that there is a directory + if code_gen_dir == "" or not os.path.isdir(code_gen_dir): + code_gen_dir = tmp.mkdtemp(prefix="code_gen_" + str(node.op_type) + "_") + inst.set_nodeattr("code_gen_dir", code_gen_dir) + # ensure that there is generated code inside the dir + inst.code_generation(model) except KeyError: # exception if op_type is not supported raise Exception("Custom op_type %s is currently not supported." % op_type) @@ -69,5 +35,5 @@ class CodeGen(Transformation): backend_attribute = get_by_name(node.attribute, "backend") backend_value = backend_attribute.s.decode("UTF-8") if backend_value == "fpgadataflow": - code_gen_transformation(node, model) + _codegen_single_node(node, model) return (model, False) -- GitLab