diff --git a/tests/end2end/test_end2end_bnn_pynq.py b/tests/end2end/test_end2end_bnn_pynq.py index ddea2dafce02c181a279d9c95759b97dee00a504..6d0e028a1dc499154e6526be9384f92438a4b98a 100644 --- a/tests/end2end/test_end2end_bnn_pynq.py +++ b/tests/end2end/test_end2end_bnn_pynq.py @@ -129,12 +129,7 @@ def update_dashboard_data(topology, wbits, abits, key, val): def fold_tfc(model): fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") # (PE, SIMD, ramstyle) for each layer - config = [ - (16, 49, "block"), - (8, 8, "auto"), - (8, 8, "auto"), - (10, 8, "distributed"), - ] + config = [(16, 49, "block"), (8, 8, "auto"), (8, 8, "auto"), (10, 8, "distributed")] for fcl, (pe, simd, ramstyle) in zip(fc_layers, config): fcl_inst = getCustomOp(fcl) fcl_inst.set_nodeattr("PE", pe) @@ -372,6 +367,7 @@ class TestEnd2End: def test_streamline(self, topology, wbits, abits): prev_chkpt_name = get_checkpoint_name(topology, wbits, abits, "pre_post") model = load_test_checkpoint_or_skip(prev_chkpt_name) + model = model.transform(absorb.AbsorbSignBiasIntoMultiThreshold()) # move past any reshapes to be able to streamline input scaling model = model.transform(MoveScalarLinearPastInvariants()) model = model.transform(Streamline())