diff --git a/tests/transformation/test_batchnorm_to_affine.py b/tests/transformation/test_batchnorm_to_affine.py
index d3bf26bfa0185b9305b1cb331d72270d85884738..d23934ce2b24531e13f106abe2d3108406ac8cb4 100644
--- a/tests/transformation/test_batchnorm_to_affine.py
+++ b/tests/transformation/test_batchnorm_to_affine.py
@@ -12,15 +12,10 @@ from finn.transformation.fold_constants import FoldConstants
 from finn.transformation.infer_shapes import InferShapes
 from finn.util.test import get_test_model_trained
 
-export_onnx_path = "test_output_lfc.onnx"
-transformed_onnx_path = "test_output_lfc_transformed.onnx"
-# TODO get from config instead, hardcoded to Docker path for now
-trained_lfc_checkpoint = (
-    "/workspace/brevitas_cnv_lfc/pretrained_models/LFC_1W1A/checkpoints/best.tar"
-)
+export_onnx_path = "test_output_bn2affine.onnx"
 
 
-def test_batchnorm_to_affine():
+def test_batchnorm_to_affine_lfc_w1a1():
     lfc = get_test_model_trained("LFC", 1, 1)
     bo.export_finn_onnx(lfc, (1, 1, 28, 28), export_onnx_path)
     model = ModelWrapper(export_onnx_path)
@@ -33,3 +28,18 @@ def test_batchnorm_to_affine():
     input_dict = {"0": nph.to_array(input_tensor)}
     assert oxe.compare_execution(model, new_model, input_dict)
     os.remove(export_onnx_path)
+
+
+def test_batchnorm_to_affine_cnv_w1a1():
+    lfc = get_test_model_trained("CNV", 1, 1)
+    bo.export_finn_onnx(lfc, (1, 3, 32, 32), export_onnx_path)
+    model = ModelWrapper(export_onnx_path)
+    model = model.transform(InferShapes())
+    model = model.transform(FoldConstants())
+    # TODO shape inference failing on transformed model below -- needs debug
+    new_model = model.transform(BatchNormToAffine())
+    # check that there are no BN nodes left
+    # TODO replace this with execution test
+    op_types = list(map(lambda x: x.op_type, new_model.graph.node))
+    assert "BatchNormalization" not in op_types
+    os.remove(export_onnx_path)