diff --git a/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py b/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py index c7db5b1d9d22ea89740f4c82633c96746a6fa5ee..7b4ca37cd78c6299fa824ecfc16d79ae013bab37 100644 --- a/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py +++ b/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py @@ -30,7 +30,7 @@ import os import xml.etree.ElementTree as ET import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node def hls_synth_res_estimation(model): @@ -40,36 +40,30 @@ def hls_synth_res_estimation(model): res_dict = {} for node in model.graph.node: - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - op_type = node.op_type - inst = registry.custom_op[op_type](node) - code_gen_dir = inst.get_nodeattr("code_gen_dir_ipgen") - if code_gen_dir == "": - raise Exception( - """Please run "CodeGen_ipgen" transformation and - "HLSSynth_IPGen" first to generate the report files""" - ) + if is_fpgadataflow_node(node) is True: + op_type = node.op_type + inst = registry.custom_op[op_type](node) + code_gen_dir = inst.get_nodeattr("code_gen_dir_ipgen") + if code_gen_dir == "": + raise Exception( + """Please run "CodeGen_ipgen" transformation and + "HLSSynth_IPGen" first to generate the report files""" + ) + else: + xmlfile = "{}/project_{}/sol1/syn/report/{}_csynth.xml".format( + code_gen_dir, node.name, node.name + ) + + if os.path.isfile(xmlfile): + res_dict[node.name] = dict() + tree = ET.parse(xmlfile) + root = tree.getroot() + for item in root.findall("AreaEstimates/Resources"): + for child in item: + res_dict[node.name][child.tag] = child.text else: - xmlfile = "{}/project_{}/sol1/syn/report/{}_csynth.xml".format( - code_gen_dir, node.name, node.name + raise Exception( + """Please run "HLSSynth_IPGen" first + to generate the report files""" ) - - if os.path.isfile(xmlfile): - res_dict[node.name] = dict() - tree = ET.parse(xmlfile) - root = tree.getroot() - for item in root.findall("AreaEstimates/Resources"): - for child in item: - res_dict[node.name][child.tag] = child.text - else: - raise Exception( - """Please run "HLSSynth_IPGen" first - to generate the report files""" - ) - return res_dict diff --git a/src/finn/analysis/fpgadataflow/res_estimation.py b/src/finn/analysis/fpgadataflow/res_estimation.py index 3585868906fb2c66aef045f49f0da919f933d012..c190059eceb0cc111477c84f843f4a9f9bf2f393 100644 --- a/src/finn/analysis/fpgadataflow/res_estimation.py +++ b/src/finn/analysis/fpgadataflow/res_estimation.py @@ -27,7 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node def res_estimation(model): @@ -37,14 +37,9 @@ def res_estimation(model): res_dict = {} for node in model.graph.node: - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - op_type = node.op_type - inst = registry.custom_op[op_type](node) - res_dict[node.name] = inst.node_res_estimation() + if is_fpgadataflow_node(node) is True: + op_type = node.op_type + inst = registry.custom_op[op_type](node) + res_dict[node.name] = inst.node_res_estimation() return res_dict diff --git a/src/finn/core/modelwrapper.py b/src/finn/core/modelwrapper.py index 3ddcaa03c3d62daaf1ffd9f5ae6c3857460994fc..e99a6ef4cd40d6323d77354d3c9b4be341d7649c 100644 --- a/src/finn/core/modelwrapper.py +++ b/src/finn/core/modelwrapper.py @@ -253,14 +253,12 @@ class ModelWrapper: return None def find_producer(self, tensor_name): - """Finds and returns the node that produces the tensor with given name. - Currently only works for linear graphs.""" - all_outputs = [x.output[0] for x in self._model_proto.graph.node] - try: - producer_ind = all_outputs.index(tensor_name) - return self._model_proto.graph.node[producer_ind] - except ValueError: - return None + """Finds and returns the node that produces the tensor with given name.""" + ret = None + for x in self._model_proto.graph.node: + if tensor_name in x.output: + ret = x + return ret def find_upstream(self, tensor_name, finder_fxn): """Follow the producer chain upstream, calling finder_fxn on each upstream diff --git a/src/finn/core/onnx_exec.py b/src/finn/core/onnx_exec.py index 0f47a9104e3d2ef3ee06ef908e302344d78e0b17..172ba25b223fd087df134add460a42d0a9935e0e 100644 --- a/src/finn/core/onnx_exec.py +++ b/src/finn/core/onnx_exec.py @@ -61,6 +61,10 @@ def execute_node(node, context, graph): # onnxruntime unfortunately does not implement run_node as defined by ONNX, # it can only execute entire models -- so we create a model which solely # consists of our current node. + # note: ensure that the same ValueInfo does not appear both in + # graph.value_info as well as graph.output or graph.input + # nodes with multiple outputs that are a mix of value_info and + # input/outputs may get them reordered below node_inputs = list(filter(lambda x: x.name in node.input, graph.input)) node_inputs += list( filter(lambda x: x.name in node.input, graph.value_info) @@ -84,17 +88,25 @@ def execute_node(node, context, graph): output_list = sess.run(None, input_dict) for output_ind in range(len(node.output)): + # get the name of the target buffer from node.output outp = node.output[output_ind] - if output_list[output_ind].shape != context[outp].shape: + + # retrieve the index of that name in node_outputs + for i in range(len(node_outputs)): + if outp == node_outputs[i].name: + list_ind = i + + # use that index to index output_list + if output_list[list_ind].shape != context[outp].shape: raise Exception( """Output shapes disagree after node execution: found %s vs expected %s""" % ( - str(output_list[output_ind].shape.shape), + str(output_list[list_ind].shape.shape), str(context[outp].shape), ) ) - context[outp] = output_list[output_ind] + context[outp] = output_list[list_ind] def execute_onnx(model, input_dict, return_full_exec_context=False): diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index 6d63f3b0888c2b17e9bf5c766ce382649fa6f2be..eab3decc696cb86622bbdd8f22f015515ea936d5 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -97,7 +97,7 @@ class StreamingFCLayer_Batch(HLSCustomOp): # block -- use BRAM # distributed -- use LUTRAM # see also https://www.xilinx.com/support/answers/38070.html - "decoupled_ram_style": ("s", False, "auto"), + "ram_style": ("s", False, "auto"), } my_attrs.update(super().get_nodeattr_types()) return my_attrs @@ -989,9 +989,7 @@ class StreamingFCLayer_Batch(HLSCustomOp): self.code_gen_dict["$MEM_DEPTH$"] = [ str(roundup_to_integer_multiple(self.calc_wmem(), 1024)) ] - self.code_gen_dict["$RAM_STYLE$"] = [ - self.get_nodeattr("decoupled_ram_style") - ] + self.code_gen_dict["$RAM_STYLE$"] = [self.get_nodeattr("ram_style")] template = self.decoupled_wrapper diff --git a/src/finn/transformation/fpgadataflow/cleanup.py b/src/finn/transformation/fpgadataflow/cleanup.py index e1bf53f7ef53c986fffe3dcc507e6886660eb611..a31cbfa7dd30eff37ceb2d7bf3c162093a5a3a1c 100644 --- a/src/finn/transformation/fpgadataflow/cleanup.py +++ b/src/finn/transformation/fpgadataflow/cleanup.py @@ -30,7 +30,7 @@ import os import shutil import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node from finn.transformation import Transformation @@ -53,36 +53,33 @@ class CleanUp(Transformation): model.set_metadata_prop("vivado_stitch_proj", "") for node in model.graph.node: op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - # delete code_gen_dir from npysim - code_gen_dir = inst.get_nodeattr("code_gen_dir_npysim") - if os.path.isdir(code_gen_dir): - shutil.rmtree(code_gen_dir) - inst.set_nodeattr("code_gen_dir_npysim", "") - inst.set_nodeattr("executable_path", "") - # delete code_gen_dir from ipgen and project folder - code_gen_dir = inst.get_nodeattr("code_gen_dir_ipgen") - ipgen_path = inst.get_nodeattr("ipgen_path") - if os.path.isdir(code_gen_dir): - shutil.rmtree(code_gen_dir) - if os.path.isdir(ipgen_path): - shutil.rmtree(ipgen_path) - inst.set_nodeattr("code_gen_dir_ipgen", "") - inst.set_nodeattr("ipgen_path", "") - # delete Java HotSpot Performance data log - for d_name in os.listdir("/tmp/"): - if "hsperfdata" in d_name: - shutil.rmtree("/tmp/" + str(d_name)) + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + # delete code_gen_dir from npysim + code_gen_dir = inst.get_nodeattr("code_gen_dir_npysim") + if os.path.isdir(code_gen_dir): + shutil.rmtree(code_gen_dir) + inst.set_nodeattr("code_gen_dir_npysim", "") + inst.set_nodeattr("executable_path", "") + # delete code_gen_dir from ipgen and project folder + code_gen_dir = inst.get_nodeattr("code_gen_dir_ipgen") + ipgen_path = inst.get_nodeattr("ipgen_path") + if os.path.isdir(code_gen_dir): + shutil.rmtree(code_gen_dir) + if os.path.isdir(ipgen_path): + shutil.rmtree(ipgen_path) + inst.set_nodeattr("code_gen_dir_ipgen", "") + inst.set_nodeattr("ipgen_path", "") + # delete Java HotSpot Performance data log + for d_name in os.listdir("/tmp/"): + if "hsperfdata" in d_name: + shutil.rmtree("/tmp/" + str(d_name)) - except KeyError: - # exception if op_type is not supported - raise Exception( - "Custom op_type %s is currently not supported." % op_type - ) + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) return (model, False) diff --git a/src/finn/transformation/fpgadataflow/codegen_ipgen.py b/src/finn/transformation/fpgadataflow/codegen_ipgen.py index 45db9db04f17325cafe04aad1016580054daf554..fa7725ae1fa03cc204aa58969d6fbc6cf71e7d97 100644 --- a/src/finn/transformation/fpgadataflow/codegen_ipgen.py +++ b/src/finn/transformation/fpgadataflow/codegen_ipgen.py @@ -30,7 +30,8 @@ import os import finn.custom_op.registry as registry from finn.transformation import Transformation -from finn.util.basic import get_by_name, make_build_dir +from finn.util.basic import make_build_dir +from finn.util.fpgadataflow import is_fpgadataflow_node def _codegen_single_node(node, model, fpgapart, clk): @@ -77,11 +78,6 @@ class CodeGen_ipgen(Transformation): def apply(self, model): for node in model.graph.node: - if node.domain == "finn": - backend_attribute = get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - _codegen_single_node(node, model, self.fpgapart, self.clk) + if is_fpgadataflow_node(node) is True: + _codegen_single_node(node, model, self.fpgapart, self.clk) return (model, False) diff --git a/src/finn/transformation/fpgadataflow/codegen_npysim.py b/src/finn/transformation/fpgadataflow/codegen_npysim.py index fe758ec28d67bd2f46edc864574d2edddfe6e3a3..02200e76db3f9c8207605bb93c4b07f0ebc76cab 100644 --- a/src/finn/transformation/fpgadataflow/codegen_npysim.py +++ b/src/finn/transformation/fpgadataflow/codegen_npysim.py @@ -30,7 +30,8 @@ import os import finn.custom_op.registry as registry from finn.transformation import Transformation -from finn.util.basic import get_by_name, make_build_dir +from finn.util.basic import make_build_dir +from finn.util.fpgadataflow import is_fpgadataflow_node def _codegen_single_node(node, model): @@ -67,11 +68,6 @@ class CodeGen_npysim(Transformation): def apply(self, model): for node in model.graph.node: - if node.domain == "finn": - backend_attribute = get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - _codegen_single_node(node, model) + if is_fpgadataflow_node(node) is True: + _codegen_single_node(node, model) return (model, False) diff --git a/src/finn/transformation/fpgadataflow/compile.py b/src/finn/transformation/fpgadataflow/compile.py index a76ab683209bbb1219517075ff29a75540dc7bfc..40c7da8f77efeaa655459402699a401b642b776c 100644 --- a/src/finn/transformation/fpgadataflow/compile.py +++ b/src/finn/transformation/fpgadataflow/compile.py @@ -27,7 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node from finn.transformation import NodeLocalTransformation @@ -49,31 +49,27 @@ class Compile(NodeLocalTransformation): def applyNodeLocal(self, node): op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is not None: - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - # ensure that code is generated - assert ( - inst.get_nodeattr("code_gen_dir_npysim") != "" - ), """Node - attribute "code_gen_dir_npysim" is not set. Please run - Transformation CodeGen_npysim first.""" - # call the compilation function for this node - inst.compile_singlenode_code() - # ensure that executable path is now set - assert ( - inst.get_nodeattr("executable_path") != "" - ), """Transformation - compile was not successful, there is no path to executables set - in node attribute "executable_path".""" - except KeyError: - # exception if op_type is not supported - raise Exception( - "Custom op_type %s is currently not supported." % op_type - ) + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + # ensure that code is generated + assert ( + inst.get_nodeattr("code_gen_dir_npysim") != "" + ), """Node + attribute "code_gen_dir_npysim" is not set. Please run + Transformation CodeGen_npysim first.""" + # call the compilation function for this node + inst.compile_singlenode_code() + # ensure that executable path is now set + assert ( + inst.get_nodeattr("executable_path") != "" + ), """Transformation + compile was not successful, there is no path to executables set + in node attribute "executable_path".""" + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) return (node, False) diff --git a/src/finn/transformation/fpgadataflow/hlssynth_ipgen.py b/src/finn/transformation/fpgadataflow/hlssynth_ipgen.py index 2a40b3c2302a432937d45e807515e795f02e0365..2af623818fe0e830883ef5065e5e7c9c7364ef1e 100644 --- a/src/finn/transformation/fpgadataflow/hlssynth_ipgen.py +++ b/src/finn/transformation/fpgadataflow/hlssynth_ipgen.py @@ -27,7 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node from finn.transformation import NodeLocalTransformation @@ -49,33 +49,27 @@ class HLSSynth_IPGen(NodeLocalTransformation): def applyNodeLocal(self, node): op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is None: - return (node, False) - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - # ensure that code is generated - assert ( - inst.get_nodeattr("code_gen_dir_ipgen") != "" - ), """Node - attribute "code_gen_dir_ipgen" is empty. Please run - transformation CodeGen_ipgen first.""" - # call the compilation function for this node - inst.ipgen_singlenode_code() - # ensure that executable path is now set - assert ( - inst.get_nodeattr("ipgen_path") != "" - ), """Transformation - HLSSynth_IPGen was not successful. Node attribute "ipgen_path" - is empty.""" - except KeyError: - # exception if op_type is not supported - raise Exception( - "Custom op_type %s is currently not supported." % op_type - ) - + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + # ensure that code is generated + assert ( + inst.get_nodeattr("code_gen_dir_ipgen") != "" + ), """Node + attribute "code_gen_dir_ipgen" is empty. Please run + transformation CodeGen_ipgen first.""" + # call the compilation function for this node + inst.ipgen_singlenode_code() + # ensure that executable path is now set + assert ( + inst.get_nodeattr("ipgen_path") != "" + ), """Transformation + HLSSynth_IPGen was not successful. Node attribute "ipgen_path" + is empty.""" + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) return (node, False) diff --git a/src/finn/transformation/fpgadataflow/insert_dwc.py b/src/finn/transformation/fpgadataflow/insert_dwc.py index 7121434dedef428cbd20c324d39193469e9b1a04..3fe60292e8f54a8cdf394b5e09f8a3d2bca7605c 100644 --- a/src/finn/transformation/fpgadataflow/insert_dwc.py +++ b/src/finn/transformation/fpgadataflow/insert_dwc.py @@ -3,7 +3,7 @@ from onnx import helper as oh from finn.custom_op.registry import getCustomOp from finn.transformation import Transformation -from finn.util.basic import get_by_name +from finn.util.fpgadataflow import is_fpgadataflow_node def _is_dwc_node(node): @@ -13,21 +13,9 @@ def _is_dwc_node(node): return False -def _is_fpgadataflow_node(node): - if node.domain == "finn": - n_backend = get_by_name(node.attribute, "backend") - if n_backend is None: - return False - backend_value = n_backend.s.decode("UTF-8") - if backend_value == "fpgadataflow": - return True - else: - return False - - def _suitable_node(node): if node is not None: - if _is_fpgadataflow_node(node) is True: + if is_fpgadataflow_node(node) is True: if _is_dwc_node(node) is False: return True else: diff --git a/src/finn/transformation/fpgadataflow/prepare_rtlsim.py b/src/finn/transformation/fpgadataflow/prepare_rtlsim.py index 4474831381425268d2a59e7de835bba31c55a733..baac3e7bdf5ac936a963ac8346f01638657b042c 100644 --- a/src/finn/transformation/fpgadataflow/prepare_rtlsim.py +++ b/src/finn/transformation/fpgadataflow/prepare_rtlsim.py @@ -27,7 +27,8 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node + from finn.transformation import NodeLocalTransformation try: @@ -55,22 +56,18 @@ class PrepareRTLSim(NodeLocalTransformation): def applyNodeLocal(self, node): op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is not None: - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - inst.prepare_rtlsim() - # ensure that executable path is now set - assert ( - inst.get_nodeattr("rtlsim_so") != "" - ), "Failed to prepare RTLSim, no rtlsim_so attribute found." - except KeyError: - # exception if op_type is not supported - raise Exception( - "Custom op_type %s is currently not supported." % op_type - ) + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + inst.prepare_rtlsim() + # ensure that executable path is now set + assert ( + inst.get_nodeattr("rtlsim_so") != "" + ), "Failed to prepare RTLSim, no rtlsim_so attribute found." + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) return (node, False) diff --git a/src/finn/transformation/fpgadataflow/replace_verilog_relpaths.py b/src/finn/transformation/fpgadataflow/replace_verilog_relpaths.py index dce62c20b99097feee7208cbf57aa8921ddb3566..e63ae4e0203188d9664f432f75e36994e8a71ac5 100644 --- a/src/finn/transformation/fpgadataflow/replace_verilog_relpaths.py +++ b/src/finn/transformation/fpgadataflow/replace_verilog_relpaths.py @@ -29,7 +29,7 @@ import os import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node from finn.transformation import Transformation @@ -42,32 +42,27 @@ class ReplaceVerilogRelPaths(Transformation): def apply(self, model): for node in model.graph.node: op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - # find the IP gen dir - ipgen_path = inst.get_nodeattr("ipgen_path") - if ipgen_path is not None and os.path.isdir(ipgen_path): - for dname, dirs, files in os.walk(ipgen_path): - for fname in files: - if fname.endswith(".v"): - fpath = os.path.join(dname, fname) - with open(fpath, "r") as f: - s = f.read() - old = '$readmemh(".' - new = '$readmemh("%s' % dname - s = s.replace(old, new) - old = '"./' - new = '"%s/' % dname - s = s.replace(old, new) - with open(fpath, "w") as f: - f.write(s) - except KeyError: - pass + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + # find the IP gen dir + ipgen_path = inst.get_nodeattr("ipgen_path") + if ipgen_path is not None and os.path.isdir(ipgen_path): + for dname, dirs, files in os.walk(ipgen_path): + for fname in files: + if fname.endswith(".v"): + fpath = os.path.join(dname, fname) + with open(fpath, "r") as f: + s = f.read() + old = '$readmemh(".' + new = '$readmemh("%s' % dname + s = s.replace(old, new) + old = '"./' + new = '"%s/' % dname + s = s.replace(old, new) + with open(fpath, "w") as f: + f.write(s) + except KeyError: + pass return (model, False) diff --git a/src/finn/transformation/fpgadataflow/set_exec_mode.py b/src/finn/transformation/fpgadataflow/set_exec_mode.py index 1f9c4c42189950e456da2dda77dee98fda49d522..83dda7ceccfd26fa1c43ab517ade2e19ccae4a61 100644 --- a/src/finn/transformation/fpgadataflow/set_exec_mode.py +++ b/src/finn/transformation/fpgadataflow/set_exec_mode.py @@ -27,7 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import finn.custom_op.registry as registry -import finn.util.basic as util +from finn.util.fpgadataflow import is_fpgadataflow_node from finn.transformation import Transformation @@ -42,25 +42,20 @@ class SetExecMode(Transformation): def apply(self, model): for node in model.graph.node: op_type = node.op_type - if node.domain == "finn": - backend_attribute = util.get_by_name(node.attribute, "backend") - if backend_attribute is None: - continue - backend_value = backend_attribute.s.decode("UTF-8") - if backend_value == "fpgadataflow": - try: - # lookup op_type in registry of CustomOps - inst = registry.custom_op[op_type](node) - # set sim_mode accordingly to argument mode - inst.set_nodeattr("exec_mode", self.mode) - # ensure that sim_mode is now set - assert ( - inst.get_nodeattr("exec_mode") != "" - ), """Transformation + if is_fpgadataflow_node(node) is True: + try: + # lookup op_type in registry of CustomOps + inst = registry.custom_op[op_type](node) + # set sim_mode accordingly to argument mode + inst.set_nodeattr("exec_mode", self.mode) + # ensure that sim_mode is now set + assert ( + inst.get_nodeattr("exec_mode") != "" + ), """Transformation was not successful. Node attribute "exec_mode" is not set""" - except KeyError: - # exception if op_type is not supported - raise Exception( - "Custom op_type %s is currently not supported." % op_type - ) + except KeyError: + # exception if op_type is not supported + raise Exception( + "Custom op_type %s is currently not supported." % op_type + ) return (model, False) diff --git a/src/finn/transformation/insert_topk.py b/src/finn/transformation/insert_topk.py new file mode 100644 index 0000000000000000000000000000000000000000..213d2cedf92c0276e33fcf2b50e6966aeee8c847 --- /dev/null +++ b/src/finn/transformation/insert_topk.py @@ -0,0 +1,96 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np + +from onnx import TensorProto +from onnx import helper as oh + +from finn.transformation import Transformation +from finn.core.datatype import DataType + + +class InsertTopK(Transformation): + """Add TopK node at the network output and replace the graph output with + the TopK indices.""" + + def __init__(self, k=5, axis=-1, largest=1, sorted=1): + super().__init__() + self.k = k + self.axis = axis + self.largest = largest + self.sorted = sorted + + def apply(self, model): + # get name of output tensor + graph_out_name = model.graph.output[0].name + # find final node + final_node = model.find_producer(graph_out_name) + # if a top-select op is already present, do nothing + if final_node.op_type == "TopK": + return (model, False) + else: + out_shape = model.get_tensor_shape(graph_out_name) + out_dtype = model.get_tensor_datatype(graph_out_name) + # adjust shape + out_shape[self.axis] = self.k + # make new buffer + k_tensor = np.array([self.k]).astype(np.int64) + k_value = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, [1] + ) + topk_values = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape + ) + topk_indices = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, out_shape + ) + model.graph.value_info.append(k_value) + model.set_tensor_datatype(k_value.name, out_dtype) # TODO set to int64 + model.graph.value_info.append(topk_values) + model.set_tensor_datatype(topk_values.name, out_dtype) + # create and append topk node + model.set_initializer(k_value.name, k_tensor) + topk_node = oh.make_node( + "TopK", + inputs=[graph_out_name, k_value.name], + outputs=[topk_values.name, topk_indices.name], + axis=self.axis, + largest=self.largest, + sorted=self.sorted, + ) + model.graph.node.append(topk_node) + # replace the existing output definition with topk indices + model.graph.output.insert(0, topk_indices) + model.graph.output.pop(1) + # set quantization annotation for indices + # minimal output dtype for TopK indices dependens on num. classes + # assuming UINT32 is large enough for now (FINN has currently no + # DataType.INT64) + model.set_tensor_datatype(topk_indices.name, DataType.UINT32) + return (model, True) diff --git a/tests/end2end/test_end2end_tfc_w1a1.py b/tests/end2end/test_end2end_tfc_w1a1.py index 7db8bedd64619198aa60d289bf78451932289fd6..8a670fce2e7e6585c98efa9e4a6e27a660edf925 100644 --- a/tests/end2end/test_end2end_tfc_w1a1.py +++ b/tests/end2end/test_end2end_tfc_w1a1.py @@ -137,6 +137,7 @@ def test_end2end_tfc_w1a1_fold_and_tlastmarker(): fc0w.set_nodeattr("SIMD", 16) fc0w.set_nodeattr("PE", 16) fc0w.set_nodeattr("outFIFODepth", 4) + fc0w.set_nodeattr("ram_style", "block") fc1w.set_nodeattr("SIMD", 8) fc1w.set_nodeattr("PE", 8) fc1w.set_nodeattr("outFIFODepth", 4) @@ -146,6 +147,7 @@ def test_end2end_tfc_w1a1_fold_and_tlastmarker(): fc3w.set_nodeattr("SIMD", 16) fc3w.set_nodeattr("PE", 10) fc3w.set_nodeattr("outFIFODepth", 50) + fc3w.set_nodeattr("ram_style", "distributed") model = model.transform(InsertDWC()) model = model.transform(InsertTLastMarker()) model = model.transform(GiveUniqueNodeNames()) diff --git a/tests/transformation/test_topk_insert.py b/tests/transformation/test_topk_insert.py new file mode 100644 index 0000000000000000000000000000000000000000..ac32c30edbbf466b2b441bcc92975a7d50f42bda --- /dev/null +++ b/tests/transformation/test_topk_insert.py @@ -0,0 +1,58 @@ +import onnx +from finn.util.test import get_test_model_trained +import brevitas.onnx as bo +import numpy as np +import onnx.numpy_helper as nph +import torch + +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.insert_topk import InsertTopK + +import finn.core.onnx_exec as oxe +from pkgutil import get_data + +import pytest + +export_onnx_path = "test_output_lfc.onnx" + + +@pytest.mark.parametrize("k", [1, 5, 10]) +def test_topk_insert(k): + tfc = get_test_model_trained("TFC", 1, 1) + bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) + model = ModelWrapper(export_onnx_path) + + # do transformations (no topk) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataTypes()) + + # verification: generate random input, run through net, streamline, + # run again, check that output is top-k + raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") + input_tensor = onnx.load_tensor_from_string(raw_i) + input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float() + output_golden = tfc.forward(input_brevitas).detach().numpy() + output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] + output_golden_topk = output_golden_topk.flatten() + + input_dict = {"global_in": nph.to_array(input_tensor)} + + # insert top-k + model = model.transform(InsertTopK(k)) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferShapes()) + + # verify output of top-k + output_dict_topk = oxe.execute_onnx(model, input_dict) + output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] + output_pysim_topk = output_pysim_topk.astype(np.int).flatten() + + assert np.array_equal(output_golden_topk, output_pysim_topk)