diff --git a/tests/end2end/test_vitis_end2end_cnv_w1a1.py b/tests/end2end/test_vitis_end2end_cnv_w1a1.py new file mode 100644 index 0000000000000000000000000000000000000000..8630c0c1db17048ab9336c3ffbf3fa9170073068 --- /dev/null +++ b/tests/end2end/test_vitis_end2end_cnv_w1a1.py @@ -0,0 +1,250 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os +import pytest +import numpy as np + +# as of Feb'20 there is a bug that segfaults ONNX shape inference if we +# import pytorch before onnx, so we make sure to import onnx first +import onnx # NOQA +import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls +import finn.transformation.streamline.absorb as absorb +from finn.core.onnx_exec import execute_onnx +from finn.custom_op.registry import getCustomOp +from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount +from finn.transformation.fold_constants import FoldConstants + +from finn.transformation.fpgadataflow.create_dataflow_partition import ( + CreateDataflowPartition, +) +from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ +from finn.transformation.general import ( + RemoveUnusedTensors, + RemoveStaticGraphInputs, + GiveReadableTensorNames, + GiveUniqueNodeNames, +) +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline import Streamline +from finn.util.basic import alveo_part_map, alveo_default_platform +from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip +from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources +from finn.transformation.fpgadataflow.vitis_build import VitisBuild +import pkg_resources as pk +from finn.transformation.double_to_single_float import DoubleToSingleFloat +from finn.transformation.move_reshape import RemoveCNVtoFCFlatten +from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul +from finn.transformation.streamline.reorder import MakeMaxPoolNHWC +from finn.transformation.infer_data_layouts import InferDataLayouts +from finn.transformation.fpgadataflow.annotate_cycles import AnnotateCycles +import warnings + +build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] +test_alveo_board = os.getenv("ALVEO_BOARD", default="U250") +test_fpga_part = alveo_part_map[test_alveo_board] +test_platform = alveo_default_platform[test_alveo_board] +target_clk_ns = 10 +mem_mode = "decoupled" + + +def test_end2end_vitis_cnv_w1a1_export(): + import brevitas.onnx as bo + + tfc = get_test_model_trained("CNV", 1, 1) + bo.export_finn_onnx( + tfc, (1, 3, 32, 32), build_dir + "/end2end_vitis_cnv_w1a1_export.onnx" + ) + + +def test_end2end_vitis_cnv_w1a1_import_and_tidy(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_export.onnx" + ) + model = model.transform(DoubleToSingleFloat()) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(RemoveStaticGraphInputs()) + model.save(build_dir + "/end2end_vitis_cnv_w1a1_tidy.onnx") + + +def test_end2end_vitis_cnv_w1a1_streamline(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_tidy.onnx" + ) + model = model.transform(Streamline()) + model = model.transform(LowerConvsToMatMul()) + model = model.transform(MakeMaxPoolNHWC()) + model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) + model = model.transform(ConvertBipolarMatMulToXnorPopcount()) + model = model.transform(Streamline()) + model = model.transform(RemoveUnusedTensors()) + model.save(build_dir + "/end2end_vitis_cnv_w1a1_streamlined.onnx") + + +def test_end2end_vitis_cnv_w1a1_convert_to_hls_layers(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_streamlined.onnx" + ) + model = model.transform(to_hls.InferBinaryStreamingFCLayer(mem_mode)) + model = model.transform(to_hls.InferQuantizedStreamingFCLayer(mem_mode)) + model = model.transform(to_hls.InferConvInpGen()) + model = model.transform(to_hls.InferStreamingMaxPool()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(RemoveCNVtoFCFlatten()) + model = model.transform(InferDataLayouts()) + model.save(build_dir + "/end2end_vitis_cnv_w1a1_hls_layers.onnx") + + +def test_end2end_vitis_cnv_w1a1_create_dataflow_partition(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_hls_layers.onnx" + ) + parent_model = model.transform(CreateDataflowPartition()) + parent_model.save(build_dir + "/end2end_vitis_cnv_w1a1_dataflow_parent.onnx") + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + dataflow_model_filename = sdp_node.get_nodeattr("model") + dataflow_model = load_test_checkpoint_or_skip(dataflow_model_filename) + dataflow_model.save(build_dir + "/end2end_vitis_cnv_w1a1_dataflow_model.onnx") + + +def test_end2end_vitis_cnv_w1a1_fold(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_dataflow_model.onnx" + ) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + # each tuple is (PE, SIMD, in_fifo_depth) for a layer + folding = [ + (16, 3, 256), + (32, 32, 256), + (16, 32, 256), + (16, 32, 256), + (4, 32, 214), + (1, 32, 2), + (1, 4, 126), + (1, 8, 62), + (5, 1, 6), + ] + for fcl, (pe, simd, ififodepth) in zip(fc_layers, folding): + fcl_inst = getCustomOp(fcl) + fcl_inst.set_nodeattr("PE", pe) + fcl_inst.set_nodeattr("SIMD", simd) + fcl_inst.set_nodeattr("inFIFODepth", ififodepth) + + swg_layers = model.get_nodes_by_op_type("ConvolutionInputGenerator") + swg_idepth = [2, 51, 9, 106, 2, 2] + for i in range(len(swg_layers)): + swg_inst = getCustomOp(swg_layers[i]) + simd = folding[i][1] + swg_inst.set_nodeattr("SIMD", simd) + swg_inst.set_nodeattr("inFIFODepth", swg_idepth[i]) + model = model.transform(AnnotateResources("estimate")) + model = model.transform(AnnotateCycles()) + model.save(build_dir + "/end2end_vitis_cnv_w1a1_folded.onnx") + + +@pytest.mark.slow +@pytest.mark.vivado +def test_end2end_vitis_cnv_w1a1_build(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_folded.onnx" + ) + model = model.transform(VitisBuild(test_fpga_part, target_clk_ns, test_platform)) + warnings.warn( + "Post-synthesis resources (excluding shell): " + + model.get_metadata_prop("res_total_synth") + ) + model.save(build_dir + "/end2end_vitis_cnv_w1a1_build.onnx") + + +def test_end2end_vitis_cnv_w1a1_deploy_on_pynq(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_build.onnx" + ) + try: + ip = os.environ["ALVEO_IP"] # no fault for this one; skip if not defined + if ip == "": + pytest.skip("Alveo host IP address not specified") + username = os.getenv("ALVEO_USERNAME", "xilinx") + password = os.getenv("ALVEO_PASSWORD", "xilinx") + port = os.getenv("ALVEO_PORT", 22) + target_dir = os.getenv("ALVEO_TARGET_DIR", "/home/xilinx/finn") + model = model.transform(DeployToPYNQ(ip, port, username, password, target_dir)) + # save the model to be able to link it to the parent + model.save(build_dir + "/end2end_vitis_cnv_w1a1_pynq_deploy.onnx") + except KeyError: + pytest.skip("Alveo host IP address not specified") + + +def test_end2end_vitis_cnv_w1a1_run_on_pynq(): + # use the streamlined model as the "golden" model for right answers + golden = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_streamlined.onnx" + ) + iname = golden.graph.input[0].name + oname = golden.graph.output[0].name + # load one of the test vectors + fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") + input_tensor = np.load(fn)["arr_0"].astype(np.float32) + input_tensor = input_tensor / 255 + assert input_tensor.shape == (1, 3, 32, 32) + x = input_tensor + # x = np.zeros(ishape, dtype=np.float32) + # run using FINN-based execution + ret_golden = execute_onnx(golden, {iname: x}, True) + y_golden = ret_golden[oname] + # set up parent+child graph to test + # we'll use models from the previous step as the child model + parent_model = load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_dataflow_parent.onnx" + ) + iname = parent_model.graph.input[0].name + oname = parent_model.graph.output[0].name + try: + ip = os.environ["ALVEO_IP"] # NOQA + if ip == "": + pytest.skip("Alveo host IP address not specified") + # produce results with cppsim + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + load_test_checkpoint_or_skip( + build_dir + "/end2end_vitis_cnv_w1a1_pynq_deploy.onnx" + ) + sdp_node.set_nodeattr( + "model", build_dir + "/end2end_vitis_cnv_w1a1_pynq_deploy.onnx" + ) + ret = execute_onnx(parent_model, {iname: x}, True) + y = ret[oname] + assert np.isclose(y, y_golden).all() + assert np.argmax(y) == 3 + + except KeyError: + pytest.skip("Alveo host IP address not specified")