diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 8e4e82db3a046e454373c2f0b58d55865cda9c5b..c513c5493d674b067b82fdae9e675d7f9b6eb024 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -27,7 +27,8 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. exclude: '^docs/conf.py' - +default_language_version: + python: python3 repos: # black - repo: https://github.com/ambv/black diff --git a/run-docker.sh b/run-docker.sh index e010733080b7cae205119e2bc136cff836f71fa5..f5c9f64b7d89e7def72c5b39131f37c22fcf57bf 100755 --- a/run-docker.sh +++ b/run-docker.sh @@ -89,7 +89,7 @@ git clone $EXAMPLES_REPO $EXAMPLES_LOCAL || git -C "$EXAMPLES_LOCAL" checkout f git clone $CNPY_REPO $CNPY_LOCAL || git -C "$CNPY_LOCAL" pull git clone $FINN_HLS_REPO $FINN_HLS_LOCAL || git -C "$FINN_HLS_LOCAL" checkout master; git -C "$FINN_HLS_LOCAL" pull git clone $PYVERILATOR_REPO $PYVERILATOR_LOCAL || git -C "$PYVERILATOR_LOCAL" pull -git clone $PYNQSHELL_REPO $PYNQSHELL_LOCAL || git -C "$PYNQSHELL_LOCAL" pull +git clone $PYNQSHELL_REPO $PYNQSHELL_LOCAL || git -C "$PYNQSHELL_LOCAL" checkout feature/synth_rpt; git -C "$PYNQSHELL_LOCAL" pull # ensure build dir exists locally mkdir -p $BUILD_LOCAL diff --git a/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py b/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py index 0334c316b80a5c0628d00b75eb40776436cb8434..c7db5b1d9d22ea89740f4c82633c96746a6fa5ee 100644 --- a/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py +++ b/src/finn/analysis/fpgadataflow/hls_synth_res_estimation.py @@ -34,9 +34,9 @@ import finn.util.basic as util def hls_synth_res_estimation(model): - """Extracts the results from the vivado synthesis. + """Extracts the FPGA resource results from the Vivado HLS synthesis estimates. - Returns {node name : resource estimation}.""" + Returns {node name : resources_dict}.""" res_dict = {} for node in model.graph.node: @@ -60,14 +60,12 @@ def hls_synth_res_estimation(model): ) if os.path.isfile(xmlfile): - res_dict[node.name] = [] + res_dict[node.name] = dict() tree = ET.parse(xmlfile) root = tree.getroot() for item in root.findall("AreaEstimates/Resources"): for child in item: - res_dict[node.name].append( - ["{} : {}".format(child.tag, child.text)] - ) + res_dict[node.name][child.tag] = child.text else: raise Exception( """Please run "HLSSynth_IPGen" first diff --git a/src/finn/analysis/fpgadataflow/post_synth_res.py b/src/finn/analysis/fpgadataflow/post_synth_res.py new file mode 100644 index 0000000000000000000000000000000000000000..508c34aaed50f2935f4915cdcea29a3e92641b3c --- /dev/null +++ b/src/finn/analysis/fpgadataflow/post_synth_res.py @@ -0,0 +1,80 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os +import xml.etree.ElementTree as ET + +from finn.transformation.move_reshape import _is_fpgadataflow_node + + +def post_synth_res(model): + """Extracts the FPGA resource results from the Vivado synthesis. + + Returns {node name : resources_dict}.""" + + res_dict = {} + synth_report_filename = model.get_metadata_prop("vivado_synth_rpt") + if os.path.isfile(synth_report_filename): + tree = ET.parse(synth_report_filename) + root = tree.getroot() + all_cells = root.findall(".//tablecell") + # strip all whitespace from table cell contents + for cell in all_cells: + cell.attrib["contents"] = cell.attrib["contents"].strip() + else: + raise Exception("Please run synthesis first") + + for node in model.graph.node: + if _is_fpgadataflow_node(node): + row = root.findall(".//*[@contents='%s']/.." % node.name) + if row != []: + node_dict = {} + row = row[0].getchildren() + """ Expected XML structure: +<tablerow class="" suppressoutput="0" wordwrap="0"> + <tableheader class="" contents="Instance" halign="3" width="-1"/> + <tableheader class="" contents="Module" halign="3" width="-1"/> + <tableheader class="" contents="Total LUTs" halign="3" width="-1"/> + <tableheader class="" contents="Logic LUTs" halign="3" width="-1"/> + <tableheader class="" contents="LUTRAMs" halign="3" width="-1"/> + <tableheader class="" contents="SRLs" halign="3" width="-1"/> + <tableheader class="" contents="FFs" halign="3" width="-1"/> + <tableheader class="" contents="RAMB36" halign="3" width="-1"/> + <tableheader class="" contents="RAMB18" halign="3" width="-1"/> + <tableheader class="" contents="DSP48 Blocks" halign="3" width="-1"/> +</tablerow> + """ + node_dict["LUT"] = int(row[2].attrib["contents"]) + node_dict["SRL"] = int(row[5].attrib["contents"]) + node_dict["FF"] = int(row[6].attrib["contents"]) + node_dict["BRAM_36K"] = int(row[7].attrib["contents"]) + node_dict["BRAM_18K"] = int(row[8].attrib["contents"]) + node_dict["DSP48"] = int(row[9].attrib["contents"]) + res_dict[node.name] = node_dict + + return res_dict diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py index 10f8b7feedf7584afb66a7fad8f1ee20745bf67d..4231be7c523a5a510de89fb1202dc7bbcf30d39f 100644 --- a/src/finn/custom_op/fpgadataflow/__init__.py +++ b/src/finn/custom_op/fpgadataflow/__init__.py @@ -73,15 +73,18 @@ class HLSCustomOp(CustomOp): "exec_mode": ("s", False, ""), "sim_cycles": ("i", False, 0), "rtlsim_trace": ("s", False, ""), + "res_estimate": ("s", False, ""), + "res_hls": ("s", False, ""), + "res_synth": ("s", False, ""), } def node_res_estimation(self): """Returns summarized resource estimation of BRAMs and LUTs - of the node.""" - resources = [] - resources.append("BRAMs: " + str(self.bram_estimation())) - resources.append("LUTs: " + str(self.lut_estimation())) - return resources + of the node as a dictionary.""" + ret = dict() + ret["BRAM_18K"] = self.bram_estimation() + ret["LUT"] = self.lut_estimation() + return ret def bram_estimation(self): """Function for BRAM resource estimation, is member function of @@ -99,6 +102,7 @@ class HLSCustomOp(CustomOp): # generate top cpp file for ip generation path = self.get_nodeattr("code_gen_dir_ipgen") + self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("ipgen") @@ -156,6 +160,7 @@ class HLSCustomOp(CustomOp): """Generates c++ code for simulation (npysim).""" node = self.onnx_node path = self.get_nodeattr("code_gen_dir_npysim") + self.code_gen_dict["$AP_INT_MAX_W$"] = [str(self.get_ap_int_max_w())] self.generate_params(model, path) self.global_includes() self.defines("npysim") @@ -429,3 +434,8 @@ compilation transformations? def get_outstream_width(self): """Returns output stream width, if implemented.""" raise Exception("get_outstream_width not implemented for this op") + + def get_ap_int_max_w(self): + instream = self.get_instream_width() + outstream = self.get_outstream_width() + return max([instream, outstream]) diff --git a/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py b/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py index e2a2f90b85a790a6d4fc7053d0e742329a7a1012..2ef5d350fb972e448b9a3745eb8c98197ab87d94 100644 --- a/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py +++ b/src/finn/custom_op/fpgadataflow/convolutioninputgenerator.py @@ -29,7 +29,11 @@ import os import numpy as np -from pyverilator import PyVerilator + +try: + from pyverilator import PyVerilator +except ModuleNotFoundError: + PyVerilator = None from finn.core.datatype import DataType from finn.custom_op.fpgadataflow import HLSCustomOp @@ -73,6 +77,10 @@ class ConvolutionInputGenerator(HLSCustomOp): ishape = (1, ifm_dim, ifm_dim, ifm_ch) return ishape + def get_folded_input_shape(self): + """Assumption: No folding on input""" + return self.get_normal_input_shape() + def get_normal_output_shape(self): k = self.get_nodeattr("ConvKernelDim") ifm_dim = self.get_nodeattr("IFMDim") @@ -124,12 +132,6 @@ class ConvolutionInputGenerator(HLSCustomOp): def verify_node(self): pass - def bram_estimation(self): - pass - - def lut_estimation(self): - pass - def get_input_datatype(self): """Returns FINN DataType of input.""" return DataType[self.get_nodeattr("inputDataType")] @@ -206,6 +208,9 @@ class ConvolutionInputGenerator(HLSCustomOp): did not produce expected ofolded utput shape" context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape) elif mode == "rtlsim": + if PyVerilator is None: + raise ImportError("Installation of PyVerilator is required.") + prefixed_top_name = "%s_%s" % (node.name, node.name) # check if needed file exists verilog_file = "{}/project_{}/sol1/impl/verilog/{}.v".format( @@ -272,9 +277,10 @@ class ConvolutionInputGenerator(HLSCustomOp): def defines(self, var): numReps = 1 self.code_gen_dict["$DEFINES$"] = [ - """#define ConvKernelDim1 {}\n #define IFMChannels1 {} - #define Input_precision1 {}\n #define IFMDim1 {}\n #define OFMDim1 {} - #define SIMD1 {}\n #define Stride1 {}\n #define numReps {}""".format( + """#define ConvKernelDim1 {}\n #define IFMChannels1 {}\n + #define Input_precision1 {}\n #define IFMDim1 {}\n + #define OFMDim1 {}\n #define SIMD1 {}\n + #define Stride1 {}\n #define numReps {}""".format( self.get_nodeattr("ConvKernelDim"), self.get_nodeattr("IFMChannels"), self.get_input_datatype().bitwidth(), diff --git a/src/finn/custom_op/fpgadataflow/streamingdatawidthconverter_batch.py b/src/finn/custom_op/fpgadataflow/streamingdatawidthconverter_batch.py index ce135e91088d2bfabe0259e1cc6873bb54884198..5e4c99aa41216b05f66da8341870269c620c6c40 100644 --- a/src/finn/custom_op/fpgadataflow/streamingdatawidthconverter_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingdatawidthconverter_batch.py @@ -28,7 +28,11 @@ import os import numpy as np -from pyverilator import PyVerilator + +try: + from pyverilator import PyVerilator +except ModuleNotFoundError: + PyVerilator = None from finn.custom_op.fpgadataflow import HLSCustomOp from finn.core.datatype import DataType from onnx import TensorProto, helper @@ -206,12 +210,6 @@ class StreamingDataWidthConverter_Batch(HLSCustomOp): return info_messages - def bram_estimation(self): - pass - - def lut_estimation(self): - pass - def global_includes(self): self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"'] @@ -353,6 +351,9 @@ class StreamingDataWidthConverter_Batch(HLSCustomOp): context[node.output[0]] = output elif mode == "rtlsim": + if PyVerilator is None: + raise ImportError("Installation of PyVerilator is required.") + prefixed_top_name = "%s_%s" % (node.name, node.name) # check if needed file exists verilog_file = "{}/project_{}/sol1/impl/verilog/{}.v".format( diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index 00b8287a312fc82425b508ffef66f5187d074617..567a6cc984293c1db79657ce6ac8d186aa2fa1f3 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -32,7 +32,11 @@ import subprocess from shutil import copy import numpy as np -from pyverilator import PyVerilator + +try: + from pyverilator import PyVerilator +except ModuleNotFoundError: + PyVerilator = None from onnx import TensorProto, helper from finn.core.datatype import DataType from finn.custom_op.fpgadataflow import HLSCustomOp @@ -270,6 +274,11 @@ class StreamingFCLayer_Batch(HLSCustomOp): wp = self.get_weight_datatype().bitwidth() return pe * simd * wp + def get_ap_int_max_w(self): + temp_value = super().get_ap_int_max_w() + weightstream = self.get_weightstream_width() + return max([weightstream, temp_value]) + def get_folded_input_shape(self): mw = self.get_nodeattr("MW") simd = self.get_nodeattr("SIMD") @@ -631,6 +640,9 @@ class StreamingFCLayer_Batch(HLSCustomOp): oshape = self.get_normal_output_shape() context[node.output[0]] = context[node.output[0]].reshape(*oshape) elif mode == "rtlsim": + if PyVerilator is None: + raise ImportError("Installation of PyVerilator is required.") + # set top name depending on mem_mode mem_mode = self.get_nodeattr("mem_mode") if mem_mode == "const": @@ -714,9 +726,9 @@ class StreamingFCLayer_Batch(HLSCustomOp): numInputVectors = list(self.get_nodeattr("numInputVectors")) numReps = np.prod(numInputVectors) self.code_gen_dict["$DEFINES$"] = [ - """#define MW1 {}\n #define MH1 {}\n #define SIMD1 {}\n - #define PE1 {}\n #define WMEM1 {}\n #define TMEM1 {}\n - #define numReps {}""".format( + """#define MW1 {}\n #define MH1 {}\n + #define SIMD1 {}\n #define PE1 {}\n #define WMEM1 {}\n + #define TMEM1 {}\n #define numReps {}""".format( self.get_nodeattr("MW"), self.get_nodeattr("MH"), self.get_nodeattr("SIMD"), diff --git a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py index 804da50f5a2c2de7c920975de4e082851a627c4e..a7c2d5166b6af41327abcfeaa5cb5ae25fd23856 100644 --- a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py @@ -28,7 +28,11 @@ import os import numpy as np -from pyverilator import PyVerilator + +try: + from pyverilator import PyVerilator +except ModuleNotFoundError: + PyVerilator = None from finn.custom_op.fpgadataflow import HLSCustomOp from finn.custom_op.im2col import compute_conv_output_dim from finn.core.datatype import DataType @@ -64,6 +68,9 @@ class StreamingMaxPool_Batch(HLSCustomOp): ishape = (1, ifm_dim, ifm_dim, ifm_ch) return ishape + def get_folded_input_shape(self): + return self.get_normal_input_shape() + def get_normal_output_shape(self): k = self.get_nodeattr("PoolDim") ifm_dim = self.get_nodeattr("ImgDim") @@ -143,12 +150,6 @@ class StreamingMaxPool_Batch(HLSCustomOp): return info_messages - def bram_estimation(self): - pass - - def lut_estimation(self): - pass - def global_includes(self): self.code_gen_dict["$GLOBALS$"] = ['#include "maxpool.h"'] @@ -301,6 +302,9 @@ class StreamingMaxPool_Batch(HLSCustomOp): did not produce expected ofolded utput shape" context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape) elif mode == "rtlsim": + if PyVerilator is None: + raise ImportError("Installation of PyVerilator is required.") + prefixed_top_name = "%s_%s" % (node.name, node.name) # check if needed file exists verilog_file = "{}/project_{}/sol1/impl/verilog/{}.v".format( diff --git a/src/finn/custom_op/fpgadataflow/templates.py b/src/finn/custom_op/fpgadataflow/templates.py index 98035a6b7927e5d7eb0ba24bd69b37ddb3b15f94..b869efbbc92ae45fd48085e4495fad3d178ff129 100644 --- a/src/finn/custom_op/fpgadataflow/templates.py +++ b/src/finn/custom_op/fpgadataflow/templates.py @@ -29,11 +29,12 @@ # template for single node execution docompute_template = """ -#define AP_INT_MAX_W 16384 +#define AP_INT_MAX_W $AP_INT_MAX_W$ #include "cnpy.h" #include "npy2apintstream.hpp" #include <vector> #include "bnn-library.h" + // includes for network parameters $GLOBALS$ @@ -60,8 +61,10 @@ $SAVEASCNPY$ # cpp file ipgen_template = """ -#define AP_INT_MAX_W 4096 +#define AP_INT_MAX_W $AP_INT_MAX_W$ + #include "bnn-library.h" + // includes for network parameters $GLOBALS$ @@ -134,15 +137,15 @@ wire [31:0] config_q0; //multiple wire AXI Streams reg m_axis_0_afull = 0; -reg m_axis_0_tready; +wire m_axis_0_tready; wire m_axis_0_tvalid; wire $WEIGHT_RANGE$ m_axis_0_tdata; -reg m_axis_0_tready_q; +wire m_axis_0_tready_q; wire m_axis_0_tvalid_q; wire $WEIGHT_RANGE$ m_axis_0_tdata_q; -reg m_axis_0_tready_q2; +wire m_axis_0_tready_q2; wire m_axis_0_tvalid_q2; wire $WEIGHT_RANGE$ m_axis_0_tdata_q2; diff --git a/src/finn/transformation/fpgadataflow/annotate_resources.py b/src/finn/transformation/fpgadataflow/annotate_resources.py new file mode 100644 index 0000000000000000000000000000000000000000..d192372a7d9c1f6ee2f088c6a058b994d21f6c99 --- /dev/null +++ b/src/finn/transformation/fpgadataflow/annotate_resources.py @@ -0,0 +1,78 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import finn.custom_op.registry as registry +from finn.transformation import Transformation +from finn.transformation.move_reshape import _is_fpgadataflow_node +from finn.analysis.fpgadataflow.res_estimation import res_estimation +from finn.analysis.fpgadataflow.hls_synth_res_estimation import hls_synth_res_estimation +from finn.analysis.fpgadataflow.post_synth_res import post_synth_res + + +class AnnotateResources(Transformation): + """Annotate the amount of FPGA resources taken by each fpgadataflow + node as an attribute on the node, depending on the mode parameter: + * 'estimate' -- use the analytical estimation model + * 'hls' -- use results from the HLS synthesis report + + No annotations can be provided unless the relevant transformation for the + chosen mode (e.g. HLSSynth_IPGen for hls) was previously run. + """ + + def __init__(self, mode): + super().__init__() + self.mode = mode + + def apply(self, model): + graph = model.graph + if self.mode == "estimate": + res_fxn = res_estimation + elif self.mode == "hls": + res_fxn = hls_synth_res_estimation + elif self.mode == "synth": + res_fxn = post_synth_res + else: + raise Exception("Unrecognized mode for AnnotateResources") + res_dict = model.analysis(res_fxn) + total_dict = {} + for lname in res_dict.keys(): + layer_res_dict = res_dict[lname] + for r_type in layer_res_dict.keys(): + r_amount = layer_res_dict[r_type] + r_amount = float(r_amount) + if r_type in total_dict.keys(): + total_dict[r_type] += r_amount + else: + total_dict[r_type] = r_amount + model.set_metadata_prop("res_total_" + self.mode, str(total_dict)) + for node in graph.node: + if _is_fpgadataflow_node(node) and node.name in res_dict.keys(): + op_inst = registry.getCustomOp(node) + op_inst.set_nodeattr("res_" + self.mode, str(res_dict[node.name])) + + return (model, False) diff --git a/src/finn/transformation/fpgadataflow/codegen_ipgen.py b/src/finn/transformation/fpgadataflow/codegen_ipgen.py index ab3b4e820e04ff1f0a02b6b95254b5fe8b45de91..45db9db04f17325cafe04aad1016580054daf554 100644 --- a/src/finn/transformation/fpgadataflow/codegen_ipgen.py +++ b/src/finn/transformation/fpgadataflow/codegen_ipgen.py @@ -46,7 +46,7 @@ def _codegen_single_node(node, model, fpgapart, clk): # ensure that there is a directory if code_gen_dir == "" or not os.path.isdir(code_gen_dir): code_gen_dir = make_build_dir( - prefix="code_gen_ipgen_" + str(node.op_type) + "_" + prefix="code_gen_ipgen_" + str(node.name) + "_" ) inst.set_nodeattr("code_gen_dir_ipgen", code_gen_dir) # ensure that there is generated code inside the dir diff --git a/src/finn/transformation/fpgadataflow/codegen_ipstitch.py b/src/finn/transformation/fpgadataflow/codegen_ipstitch.py index 0fbd83199d88ec68cbf11c6ded5af33fdd4d91a3..f482db793018933883a068bb16fd99ece671064b 100644 --- a/src/finn/transformation/fpgadataflow/codegen_ipstitch.py +++ b/src/finn/transformation/fpgadataflow/codegen_ipstitch.py @@ -176,7 +176,8 @@ class CodeGen_ipstitch(Transformation): tcl.append("set all_v_files [get_files -filter {FILE_TYPE == Verilog}]") v_file_list = "%s/all_verilog_srcs.txt" % vivado_stitch_proj_dir tcl.append("set fp [open %s w]" % v_file_list) - tcl.append("puts $fp $all_v_files") + # write each verilog filename to all_verilog_srcs.txt + tcl.append("foreach vf $all_v_files {puts $fp $vf}") tcl.append("close $fp") # write the project creator tcl script tcl_string = "\n".join(tcl) + "\n" diff --git a/src/finn/transformation/fpgadataflow/codegen_npysim.py b/src/finn/transformation/fpgadataflow/codegen_npysim.py index d2862d82cf76f62bc236ace9d44c607dd2ab86ff..fe758ec28d67bd2f46edc864574d2edddfe6e3a3 100644 --- a/src/finn/transformation/fpgadataflow/codegen_npysim.py +++ b/src/finn/transformation/fpgadataflow/codegen_npysim.py @@ -46,7 +46,7 @@ def _codegen_single_node(node, model): # ensure that there is a directory if code_gen_dir == "" or not os.path.isdir(code_gen_dir): code_gen_dir = make_build_dir( - prefix="code_gen_npysim_" + str(node.op_type) + "_" + prefix="code_gen_npysim_" + str(node.name) + "_" ) inst.set_nodeattr("code_gen_dir_npysim", code_gen_dir) # ensure that there is generated code inside the dir diff --git a/src/finn/transformation/fpgadataflow/make_pynq_proj.py b/src/finn/transformation/fpgadataflow/make_pynq_proj.py index c2c3802635ba8b1be9bf7f0c71e48ad13b79771f..9921ce7caf2aaffd197f9bc863ab77502a963647 100644 --- a/src/finn/transformation/fpgadataflow/make_pynq_proj.py +++ b/src/finn/transformation/fpgadataflow/make_pynq_proj.py @@ -113,11 +113,15 @@ class MakePYNQProject(Transformation): # create a temporary folder for the project vivado_pynq_proj_dir = make_build_dir(prefix="vivado_pynq_proj_") model.set_metadata_prop("vivado_pynq_proj", vivado_pynq_proj_dir) + # filename for the synth utilization report + synth_report_filename = vivado_pynq_proj_dir + "/synth_report.xml" + model.set_metadata_prop("vivado_synth_rpt", synth_report_filename) ip_config_tcl = templates.ip_config_tcl_template % ( vivado_pynq_proj_dir, ip_dirs_str, vivado_pynq_proj_dir, + synth_report_filename, vivado_stitch_vlnv, in_bytes, out_bytes, diff --git a/src/finn/transformation/fpgadataflow/templates.py b/src/finn/transformation/fpgadataflow/templates.py index edbf28c4e9d49129d22da12985f3b8c003e3d745..81cb954bb4503c8daf18bad5881661018e9d17b7 100644 --- a/src/finn/transformation/fpgadataflow/templates.py +++ b/src/finn/transformation/fpgadataflow/templates.py @@ -38,6 +38,7 @@ variable config_ip_use_axilite variable config_ip_project_dir variable config_output_products_dir variable config_remote_cache +variable config_util_report_filename # for arguments involving paths below: use absolute paths or relative to the # platform/overlay/bitstream folder @@ -47,6 +48,8 @@ set config_ip_project_dir %s set config_ip_repo %s # where the produced bitfile and .hwh file will be placed set config_output_products_dir %s +# where the synth util XML report will be written +set config_util_report_filename %s # non-path arguments # VLNV of the IP block diff --git a/src/finn/transformation/move_reshape.py b/src/finn/transformation/move_reshape.py new file mode 100644 index 0000000000000000000000000000000000000000..6a30fd93cc0bdc322b6ec7d892d42d3c3ca96fd6 --- /dev/null +++ b/src/finn/transformation/move_reshape.py @@ -0,0 +1,40 @@ +from finn.transformation import Transformation +from finn.util.basic import get_by_name + + +def _is_fpgadataflow_node(node): + if node is not None: + if node.domain == "finn": + n_backend = get_by_name(node.attribute, "backend") + if n_backend is None: + return False + backend_value = n_backend.s.decode("UTF-8") + if backend_value == "fpgadataflow": + return True + else: + return False + else: + return False + + +class MoveReshape(Transformation): + """Removes a node that implements a (1, -1) reshape if it is + between two fpgadataflow nodes""" + + def apply(self, model): + + graph = model.graph + graph_modified = False + for n in graph.node: + if n.op_type == "Reshape": + graph_modified = True + shape = model.get_initializer(n.input[1]) + if (shape == [1, -1]).all(): + producer = model.find_producer(n.input[0]) + if _is_fpgadataflow_node(producer) is True: + consumer = model.find_consumer(n.output[0]) + if _is_fpgadataflow_node(consumer) is True: + consumer.input[0] = n.input[0] + graph.node.remove(n) + + return (model, graph_modified) diff --git a/src/finn/util/fpgadataflow.py b/src/finn/util/fpgadataflow.py index 29607b002bd7d7748d450c84f816606d18fded81..5b29ddbcd1dcc4f771dbc4eb633bf7c1ecb6b3aa 100644 --- a/src/finn/util/fpgadataflow.py +++ b/src/finn/util/fpgadataflow.py @@ -29,7 +29,11 @@ import os import subprocess -from pyverilator import PyVerilator +try: + from pyverilator import PyVerilator +except ModuleNotFoundError: + PyVerilator = None +from finn.util.basic import get_by_name class IPGenBuilder: @@ -69,6 +73,9 @@ class IPGenBuilder: def pyverilate_stitched_ip(model): "Given a model with stitched IP, return a PyVerilator sim object." + if PyVerilator is None: + raise ImportError("Installation of PyVerilator is required.") + vivado_stitch_proj_dir = model.get_metadata_prop("vivado_stitch_proj") with open(vivado_stitch_proj_dir + "/all_verilog_srcs.txt", "r") as f: all_verilog_srcs = f.read().split() @@ -87,3 +94,16 @@ def pyverilate_get_liveness_threshold_cycles(): the simulation is not finishing and throwing an exception.""" return int(os.getenv("LIVENESS_THRESHOLD", 10000)) + + +def is_fpgadataflow_node(node): + is_node = False + if node is not None: + if node.domain == "finn": + n_backend = get_by_name(node.attribute, "backend") + if n_backend is not None: + backend_value = n_backend.s.decode("UTF-8") + if backend_value == "fpgadataflow": + is_node = True + + return is_node diff --git a/tests/end2end/test_end2end_cnv_w1a1.py b/tests/end2end/test_end2end_cnv_w1a1.py new file mode 100644 index 0000000000000000000000000000000000000000..1a59191a085616d08d0910b28a9e62cb6596b7c4 --- /dev/null +++ b/tests/end2end/test_end2end_cnv_w1a1.py @@ -0,0 +1,329 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os + +import numpy as np + +# as of Feb'20 there is a bug that segfaults ONNX shape inference if we +# import pytorch before onnx, so we make sure to import onnx first +import onnx # NOQA + +import pytest +import pkg_resources as pk +from finn.core.modelwrapper import ModelWrapper +from finn.custom_op.registry import getCustomOp +from finn.core.onnx_exec import execute_onnx +from finn.transformation.double_to_single_float import DoubleToSingleFloat +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.move_reshape import MoveReshape +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.streamline import Streamline +from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul +from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount +import finn.transformation.streamline.absorb as absorb +from finn.transformation.streamline.reorder import MakeMaxPoolNHWC +import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls +from finn.transformation.fpgadataflow.create_dataflow_partition import ( + CreateDataflowPartition, +) +from finn.transformation.fpgadataflow.insert_dwc import InsertDWC +from finn.transformation.fpgadataflow.insert_tlastmarker import InsertTLastMarker +from finn.transformation.fpgadataflow.codegen_ipgen import CodeGen_ipgen +from finn.transformation.fpgadataflow.hlssynth_ipgen import HLSSynth_IPGen +from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( + ReplaceVerilogRelPaths, +) +from finn.transformation.fpgadataflow.codegen_ipstitch import CodeGen_ipstitch +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.fpgadataflow.codegen_npysim import CodeGen_npysim +from finn.transformation.fpgadataflow.compile import Compile +from finn.transformation.fpgadataflow.make_pynq_driver import MakePYNQDriver +from finn.transformation.fpgadataflow.make_pynq_proj import MakePYNQProject +from finn.transformation.fpgadataflow.synth_pynq_proj import SynthPYNQProject +from finn.transformation.fpgadataflow.make_deployment import DeployToPYNQ +from finn.util.basic import pynq_part_map +from finn.util.test import get_test_model_trained +from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources + + +build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] +test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") +test_fpga_part = pynq_part_map[test_pynq_board] +target_clk_ns = 5 +mem_mode = "const" + + +def test_end2end_cnv_w1a1_export(): + import brevitas.onnx as bo + + cnv = get_test_model_trained("CNV", 1, 1) + bo.export_finn_onnx( + cnv, (1, 3, 32, 32), build_dir + "/end2end_cnv_w1a1_export.onnx" + ) + + +def test_end2end_cnv_w1a1_import_and_tidy(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_export.onnx") + model = model.transform(DoubleToSingleFloat()) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model.save(build_dir + "/end2end_cnv_w1a1_tidy.onnx") + + +def test_end2end_cnv_w1a1_streamline(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_tidy.onnx") + model = model.transform(Streamline()) + model = model.transform(LowerConvsToMatMul()) + model = model.transform(MakeMaxPoolNHWC()) + model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) + model = model.transform(ConvertBipolarMatMulToXnorPopcount()) + model = model.transform(Streamline()) + model.save(build_dir + "/end2end_cnv_w1a1_streamlined.onnx") + + +def test_end2end_cnv_w1a1_convert_to_hls_layers(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_streamlined.onnx") + model = model.transform(to_hls.InferBinaryStreamingFCLayer()) + model = model.transform(to_hls.InferQuantizedStreamingFCLayer()) + model = model.transform(to_hls.InferConvInpGen()) + model = model.transform(to_hls.InferStreamingMaxPool()) + model = model.transform(MoveReshape()) + model.save(build_dir + "/end2end_cnv_w1a1_hls_layers.onnx") + + +def test_end2end_cnv_w1a1_create_dataflow_partition(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_hls_layers.onnx") + parent_model = model.transform(CreateDataflowPartition()) + parent_model.save(build_dir + "/end2end_cnv_w1a1_dataflow_parent.onnx") + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + dataflow_model_filename = sdp_node.get_nodeattr("model") + dataflow_model = ModelWrapper(dataflow_model_filename) + dataflow_model.save(build_dir + "/end2end_cnv_w1a1_dataflow_model.onnx") + + +def test_end2end_cnv_w1a1_fold_and_tlastmarker(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_model.onnx") + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + fc0w = getCustomOp(fc_layers[0]) + fc1w = getCustomOp(fc_layers[1]) + fc2w = getCustomOp(fc_layers[2]) + fc3w = getCustomOp(fc_layers[3]) + fc4w = getCustomOp(fc_layers[4]) + fc5w = getCustomOp(fc_layers[5]) + fc6w = getCustomOp(fc_layers[6]) + fc7w = getCustomOp(fc_layers[7]) + fc8w = getCustomOp(fc_layers[8]) + fc0w.set_nodeattr("SIMD", 27) + fc0w.set_nodeattr("PE", 8) + fc1w.set_nodeattr("SIMD", 32) + fc1w.set_nodeattr("PE", 8) + fc2w.set_nodeattr("SIMD", 32) + fc2w.set_nodeattr("PE", 16) + fc3w.set_nodeattr("SIMD", 32) + fc3w.set_nodeattr("PE", 16) + fc4w.set_nodeattr("SIMD", 32) + fc4w.set_nodeattr("PE", 32) + fc5w.set_nodeattr("SIMD", 64) + fc5w.set_nodeattr("PE", 16) + fc6w.set_nodeattr("SIMD", 32) + fc6w.set_nodeattr("PE", 16) + fc7w.set_nodeattr("SIMD", 64) + fc7w.set_nodeattr("PE", 8) + fc8w.set_nodeattr("SIMD", 16) + fc8w.set_nodeattr("PE", 10) + + model = model.transform(InsertDWC()) + model = model.transform(InsertTLastMarker()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(AnnotateResources("estimate")) + model.save(build_dir + "/end2end_cnv_w1a1_folded.onnx") + + +def test_end2end_cnv_w1a1_gen_hls_ip(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_folded.onnx") + model = model.transform(CodeGen_ipgen(test_fpga_part, target_clk_ns)) + model = model.transform(HLSSynth_IPGen()) + model = model.transform(AnnotateResources("hls")) + model.save(build_dir + "/end2end_cnv_w1a1_ipgen.onnx") + + +def test_end2end_cnv_w1a1_ip_stitch(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipgen.onnx") + model = model.transform(ReplaceVerilogRelPaths()) + model = model.transform(CodeGen_ipstitch(test_fpga_part)) + model.save(build_dir + "/end2end_cnv_w1a1_ipstitch.onnx") + + +def test_end2end_cnv_w1a1_verify_dataflow_part(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipstitch.onnx") + x = np.zeros((1, 32, 32, 3), dtype=np.float32) + inp_name = model.graph.input[0].name + out_name = model.graph.output[0].name + inp_dict = {inp_name: x} + # npysim + model = model.transform(CodeGen_npysim()) + model = model.transform(Compile()) + model = model.transform(SetExecMode("npysim")) + model.save(build_dir + "/end2end_cnv_w1a1_ipgen_npysim.onnx") + ret_npysim = execute_onnx(model, inp_dict, True) + res_npysim = ret_npysim[out_name] + # node-by-node rtlsim + model = model.transform(SetExecMode("rtlsim")) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + for fcl in fc_layers: + getCustomOp(fcl).set_nodeattr("rtlsim_trace", "default") + model.save(build_dir + "/end2end_cnv_w1a1_ipgen_nodebynode_rtlsim.onnx") + ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True) + res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name] + # whole-network (ip-stitched) rtlsim + model.set_metadata_prop("exec_mode", "rtlsim") + model.set_metadata_prop("rtlsim_trace", "whole_trace.vcd") + model.save(build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx") + # this is a particularly long-running test, set liveness thr. to unlimited + os.environ["LIVENESS_THRESHOLD"] = "-1" + ret_rtlsim_whole = execute_onnx(model, inp_dict, True) + res_rtlsim_whole = ret_rtlsim_whole[out_name] + assert np.isclose(res_npysim, res_rtlsim_nodebynode).all() + assert np.isclose(res_npysim, res_rtlsim_whole).all() + + +def test_end2end_cnv_w1a1_verify_all(): + # use the streamlined model as the "golden" model for right answers + golden = ModelWrapper(build_dir + "/end2end_cnv_w1a1_streamlined.onnx") + iname = golden.graph.input[0].name + oname = golden.graph.output[0].name + # load one of the test vectors + fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") + input_tensor = np.load(fn)["arr_0"].astype(np.float32) + assert input_tensor.shape == (1, 3, 32, 32) + x = input_tensor + # x = np.zeros(ishape, dtype=np.float32) + ret_golden = execute_onnx(golden, {iname: x}, True) + y_golden = ret_golden[oname] + # set up parent+child graph to test + # we'll use models from the previous step as the child model + parent_model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_parent.onnx") + iname = parent_model.graph.input[0].name + oname = parent_model.graph.output[0].name + # produce results with npysim + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + sdp_node.set_nodeattr("model", build_dir + "/end2end_cnv_w1a1_ipgen_npysim.onnx") + ret_npysim = execute_onnx(parent_model, {iname: x}, True) + y_npysim = ret_npysim[oname] + # produce results with node-by-node rtlsim + sdp_node.set_nodeattr( + "model", build_dir + "/end2end_cnv_w1a1_ipgen_nodebynode_rtlsim.onnx" + ) + ret_nodebynode_rtlsim = execute_onnx(parent_model, {iname: x}, True) + y_nodebynode_rtlsim = ret_nodebynode_rtlsim[oname] + # produce results with whole-network (stitched ip) rtlsim + sdp_node.set_nodeattr( + "model", build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx" + ) + # this is a particularly long-running test, set liveness thr. to unlimited + os.environ["LIVENESS_THRESHOLD"] = "-1" + ret_whole_rtlsim = execute_onnx(parent_model, {iname: x}, True) + y_whole_rtlsim = ret_whole_rtlsim[oname] + assert np.isclose(y_golden, y_npysim).all() + assert np.isclose(y_golden, y_nodebynode_rtlsim).all() + assert np.isclose(y_golden, y_whole_rtlsim).all() + + +def test_end2end_cnv_w1a1_make_pynq_proj(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_ipstitch.onnx") + model = model.transform(MakePYNQProject(test_pynq_board)) + model.save(build_dir + "/end2end_cnv_w1a1_pynq_project.onnx") + + +def test_end2end_cnv_w1a1_synth_pynq_project(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_pynq_project.onnx") + model = model.transform(SynthPYNQProject()) + model = model.transform(AnnotateResources("synth")) + model.save(build_dir + "/end2end_cnv_w1a1_synth.onnx") + + +def test_end2end_cnv_w1a1_make_driver(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_synth.onnx") + model = model.transform(MakePYNQDriver()) + model.save(build_dir + "/end2end_cnv_w1a1_pynq_driver.onnx") + + +def test_end2end_cnv_w1a1_deploy_on_pynq(): + model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_pynq_driver.onnx") + try: + ip = os.environ["PYNQ_IP"] # no fault for this one; skip if not defined + if ip == "": + pytest.skip("PYNQ board IP address not specified") + username = os.getenv("PYNQ_USERNAME", "xilinx") + password = os.getenv("PYNQ_PASSWORD", "xilinx") + target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn") + model = model.transform(DeployToPYNQ(ip, username, password, target_dir)) + # save the model to be able to link it to the parent + model.save(build_dir + "/end2end_cnv_w1a1_pynq_deploy.onnx") + except KeyError: + pytest.skip("PYNQ board IP address not specified") + + +def test_end2end_cnv_w1a1_run_on_pynq(): + # use the streamlined model as the "golden" model for right answers + golden = ModelWrapper(build_dir + "/end2end_cnv_w1a1_streamlined.onnx") + iname = golden.graph.input[0].name + oname = golden.graph.output[0].name + # load one of the test vectors + fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") + input_tensor = np.load(fn)["arr_0"].astype(np.float32) + assert input_tensor.shape == (1, 3, 32, 32) + x = input_tensor + # run using FINN-based execution + ret_golden = execute_onnx(golden, {iname: x}, True) + y_golden = ret_golden[oname] + # set up parent+child graph to test + # we'll use models from the previous step as the child model + parent_model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_dataflow_parent.onnx") + iname = parent_model.graph.input[0].name + oname = parent_model.graph.output[0].name + try: + ip = os.environ["PYNQ_IP"] # NOQA + if ip == "": + pytest.skip("PYNQ board IP address not specified") + # produce results with npysim + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) + sdp_node.set_nodeattr("model", build_dir + "/end2end_cnv_w1a1_pynq_deploy.onnx") + ret = execute_onnx(parent_model, {iname: x}, True) + y = ret[oname] + assert np.isclose(y, y_golden).all() + + except KeyError: + pytest.skip("PYNQ board IP address not specified") diff --git a/tests/end2end/test_end2end_tfc_w1a1.py b/tests/end2end/test_end2end_tfc_w1a1.py index 9cd338caa69913dbcd1a1b66758fd633b94260ad..03d6f92f1c148ce444f08fd65a867ad9390a18fd 100644 --- a/tests/end2end/test_end2end_tfc_w1a1.py +++ b/tests/end2end/test_end2end_tfc_w1a1.py @@ -70,6 +70,7 @@ from finn.transformation.streamline import Streamline from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds from finn.util.basic import pynq_part_map from finn.util.test import get_test_model_trained +from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") @@ -117,7 +118,8 @@ def test_end2end_tfc_w1a1_create_dataflow_partition(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_hls_layers.onnx") parent_model = model.transform(CreateDataflowPartition()) parent_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_parent.onnx") - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) dataflow_model_filename = sdp_node.get_nodeattr("model") dataflow_model = ModelWrapper(dataflow_model_filename) dataflow_model.save(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx") @@ -125,14 +127,11 @@ def test_end2end_tfc_w1a1_create_dataflow_partition(): def test_end2end_tfc_w1a1_fold_and_tlastmarker(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_dataflow_model.onnx") - fc0 = model.graph.node[0] - fc1 = model.graph.node[1] - fc2 = model.graph.node[2] - fc3 = model.graph.node[3] - fc0w = getCustomOp(fc0) - fc1w = getCustomOp(fc1) - fc2w = getCustomOp(fc2) - fc3w = getCustomOp(fc3) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + fc0w = getCustomOp(fc_layers[0]) + fc1w = getCustomOp(fc_layers[1]) + fc2w = getCustomOp(fc_layers[2]) + fc3w = getCustomOp(fc_layers[3]) fc0w.set_nodeattr("inFIFODepth", 50) fc0w.set_nodeattr("SIMD", 16) fc0w.set_nodeattr("PE", 16) @@ -148,14 +147,16 @@ def test_end2end_tfc_w1a1_fold_and_tlastmarker(): fc3w.set_nodeattr("outFIFODepth", 50) model = model.transform(InsertDWC()) model = model.transform(InsertTLastMarker()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(AnnotateResources("estimate")) model.save(build_dir + "/end2end_tfc_w1a1_folded.onnx") def test_end2end_tfc_w1a1_gen_hls_ip(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_folded.onnx") - model = model.transform(GiveUniqueNodeNames()) model = model.transform(CodeGen_ipgen(test_fpga_part, target_clk_ns)) model = model.transform(HLSSynth_IPGen()) + model = model.transform(AnnotateResources("hls")) model.save(build_dir + "/end2end_tfc_w1a1_ipgen.onnx") @@ -181,10 +182,9 @@ def test_end2end_tfc_w1a1_verify_dataflow_part(): res_npysim = ret_npysim[out_name] # node-by-node rtlsim model = model.transform(SetExecMode("rtlsim")) - getCustomOp(model.graph.node[0]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[1]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[2]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[3]).set_nodeattr("rtlsim_trace", "default") + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + for fcl in fc_layers: + getCustomOp(fcl).set_nodeattr("rtlsim_trace", "default") model.save(build_dir + "/end2end_tfc_w1a1_ipstitch_nodebynode_rtlsim.onnx") ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True) res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name] @@ -215,7 +215,8 @@ def test_end2end_tfc_w1a1_verify_all(): iname = parent_model.graph.input[0].name oname = parent_model.graph.output[0].name # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_ipstitch_npysim.onnx") ret_npysim = execute_onnx(parent_model, {iname: x}, True) y_npysim = ret_npysim[oname] @@ -245,6 +246,7 @@ def test_end2end_tfc_w1a1_make_pynq_proj(): def test_end2end_tfc_w1a1_synth_pynq_project(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a1_pynq_project.onnx") model = model.transform(SynthPYNQProject()) + model = model.transform(AnnotateResources("synth")) model.save(build_dir + "/end2end_tfc_w1a1_synth.onnx") @@ -292,7 +294,8 @@ def test_end2end_tfc_w1a1_run_on_pynq(): if ip == "": pytest.skip("PYNQ board IP address not specified") # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a1_pynq_deploy.onnx") ret = execute_onnx(parent_model, {iname: x}, True) y = ret[oname] diff --git a/tests/end2end/test_end2end_tfc_w1a2.py b/tests/end2end/test_end2end_tfc_w1a2.py index e3eead8454e901671ae27d62a3b1999c59f176a8..7fef331b99a78b43f8e808c8cdf978a5c8233f92 100644 --- a/tests/end2end/test_end2end_tfc_w1a2.py +++ b/tests/end2end/test_end2end_tfc_w1a2.py @@ -66,6 +66,7 @@ from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import Streamline from finn.util.basic import pynq_part_map from finn.util.test import get_test_model_trained +from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") @@ -109,7 +110,8 @@ def test_end2end_tfc_w1a2_create_dataflow_partition(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_hls_layers.onnx") parent_model = model.transform(CreateDataflowPartition()) parent_model.save(build_dir + "/end2end_tfc_w1a2_dataflow_parent.onnx") - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) dataflow_model_filename = sdp_node.get_nodeattr("model") dataflow_model = ModelWrapper(dataflow_model_filename) dataflow_model.save(build_dir + "/end2end_tfc_w1a2_dataflow_model.onnx") @@ -117,14 +119,11 @@ def test_end2end_tfc_w1a2_create_dataflow_partition(): def test_end2end_tfc_w1a2_fold_and_tlastmarker(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_dataflow_model.onnx") - fc0 = model.graph.node[0] - fc1 = model.graph.node[1] - fc2 = model.graph.node[2] - fc3 = model.graph.node[3] - fc0w = getCustomOp(fc0) - fc1w = getCustomOp(fc1) - fc2w = getCustomOp(fc2) - fc3w = getCustomOp(fc3) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + fc0w = getCustomOp(fc_layers[0]) + fc1w = getCustomOp(fc_layers[1]) + fc2w = getCustomOp(fc_layers[2]) + fc3w = getCustomOp(fc_layers[3]) fc0w.set_nodeattr("inFIFODepth", 50) fc0w.set_nodeattr("SIMD", 8) fc0w.set_nodeattr("PE", 16) @@ -139,14 +138,16 @@ def test_end2end_tfc_w1a2_fold_and_tlastmarker(): fc3w.set_nodeattr("PE", 10) fc3w.set_nodeattr("outFIFODepth", 50) model = model.transform(InsertTLastMarker()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(AnnotateResources("estimate")) model.save(build_dir + "/end2end_tfc_w1a2_folded.onnx") def test_end2end_tfc_w1a2_gen_hls_ip(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_folded.onnx") - model = model.transform(GiveUniqueNodeNames()) model = model.transform(CodeGen_ipgen(test_fpga_part, target_clk_ns)) model = model.transform(HLSSynth_IPGen()) + model = model.transform(AnnotateResources("hls")) model.save(build_dir + "/end2end_tfc_w1a2_ipgen.onnx") @@ -172,10 +173,9 @@ def test_end2end_tfc_w1a2_verify_dataflow_part(): res_npysim = ret_npysim[out_name] # node-by-node rtlsim model = model.transform(SetExecMode("rtlsim")) - getCustomOp(model.graph.node[0]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[1]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[2]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[3]).set_nodeattr("rtlsim_trace", "default") + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + for fcl in fc_layers: + getCustomOp(fcl).set_nodeattr("rtlsim_trace", "default") model.save(build_dir + "/end2end_tfc_w1a2_ipstitch_nodebynode_rtlsim.onnx") ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True) res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name] @@ -206,7 +206,8 @@ def test_end2end_tfc_w1a2_verify_all(): iname = parent_model.graph.input[0].name oname = parent_model.graph.output[0].name # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a2_ipstitch_npysim.onnx") ret_npysim = execute_onnx(parent_model, {iname: x}, True) y_npysim = ret_npysim[oname] @@ -236,6 +237,7 @@ def test_end2end_tfc_w1a2_make_pynq_proj(): def test_end2end_tfc_w1a2_synth_pynq_project(): model = ModelWrapper(build_dir + "/end2end_tfc_w1a2_pynq_project.onnx") model = model.transform(SynthPYNQProject()) + model = model.transform(AnnotateResources("synth")) model.save(build_dir + "/end2end_tfc_w1a2_synth.onnx") @@ -283,7 +285,8 @@ def test_end2end_tfc_w1a2_run_on_pynq(): if ip == "": pytest.skip("PYNQ board IP address not specified") # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w1a2_pynq_deploy.onnx") ret = execute_onnx(parent_model, {iname: x}, True) y = ret[oname] diff --git a/tests/end2end/test_end2end_tfc_w2a2.py b/tests/end2end/test_end2end_tfc_w2a2.py index 84133bb6c3c32a81190ce0f8b7b4b5d3de64d079..c78be7b66fe2c2f84e6f9a1a520c3e22e769c82f 100644 --- a/tests/end2end/test_end2end_tfc_w2a2.py +++ b/tests/end2end/test_end2end_tfc_w2a2.py @@ -66,6 +66,7 @@ from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import Streamline from finn.util.basic import pynq_part_map from finn.util.test import get_test_model_trained +from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") @@ -109,7 +110,8 @@ def test_end2end_tfc_w2a2_create_dataflow_partition(): model = ModelWrapper(build_dir + "/end2end_tfc_w2a2_hls_layers.onnx") parent_model = model.transform(CreateDataflowPartition()) parent_model.save(build_dir + "/end2end_tfc_w2a2_dataflow_parent.onnx") - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) dataflow_model_filename = sdp_node.get_nodeattr("model") dataflow_model = ModelWrapper(dataflow_model_filename) dataflow_model.save(build_dir + "/end2end_tfc_w2a2_dataflow_model.onnx") @@ -117,14 +119,11 @@ def test_end2end_tfc_w2a2_create_dataflow_partition(): def test_end2end_tfc_w2a2_fold_and_tlastmarker(): model = ModelWrapper(build_dir + "/end2end_tfc_w2a2_dataflow_model.onnx") - fc0 = model.graph.node[0] - fc1 = model.graph.node[1] - fc2 = model.graph.node[2] - fc3 = model.graph.node[3] - fc0w = getCustomOp(fc0) - fc1w = getCustomOp(fc1) - fc2w = getCustomOp(fc2) - fc3w = getCustomOp(fc3) + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + fc0w = getCustomOp(fc_layers[0]) + fc1w = getCustomOp(fc_layers[1]) + fc2w = getCustomOp(fc_layers[2]) + fc3w = getCustomOp(fc_layers[3]) fc0w.set_nodeattr("inFIFODepth", 50) fc0w.set_nodeattr("SIMD", 8) fc0w.set_nodeattr("PE", 16) @@ -139,14 +138,16 @@ def test_end2end_tfc_w2a2_fold_and_tlastmarker(): fc3w.set_nodeattr("PE", 10) fc3w.set_nodeattr("outFIFODepth", 50) model = model.transform(InsertTLastMarker()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(AnnotateResources("estimate")) model.save(build_dir + "/end2end_tfc_w2a2_folded.onnx") def test_end2end_tfc_w2a2_gen_hls_ip(): model = ModelWrapper(build_dir + "/end2end_tfc_w2a2_folded.onnx") - model = model.transform(GiveUniqueNodeNames()) model = model.transform(CodeGen_ipgen(test_fpga_part, target_clk_ns)) model = model.transform(HLSSynth_IPGen()) + model = model.transform(AnnotateResources("hls")) model.save(build_dir + "/end2end_tfc_w2a2_ipgen.onnx") @@ -172,10 +173,9 @@ def test_end2end_tfc_w2a2_verify_dataflow_part(): res_npysim = ret_npysim[out_name] # node-by-node rtlsim model = model.transform(SetExecMode("rtlsim")) - getCustomOp(model.graph.node[0]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[1]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[2]).set_nodeattr("rtlsim_trace", "default") - getCustomOp(model.graph.node[3]).set_nodeattr("rtlsim_trace", "default") + fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") + for fcl in fc_layers: + getCustomOp(fcl).set_nodeattr("rtlsim_trace", "default") model.save(build_dir + "/end2end_tfc_w2a2_ipstitch_nodebynode_rtlsim.onnx") ret_rtlsim_nodebynode = execute_onnx(model, inp_dict, True) res_rtlsim_nodebynode = ret_rtlsim_nodebynode[out_name] @@ -206,7 +206,8 @@ def test_end2end_tfc_w2a2_verify_all(): iname = parent_model.graph.input[0].name oname = parent_model.graph.output[0].name # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w2a2_ipstitch_npysim.onnx") ret_npysim = execute_onnx(parent_model, {iname: x}, True) y_npysim = ret_npysim[oname] @@ -236,6 +237,7 @@ def test_end2end_tfc_w2a2_make_pynq_proj(): def test_end2end_tfc_w2a2_synth_pynq_project(): model = ModelWrapper(build_dir + "/end2end_tfc_w2a2_pynq_project.onnx") model = model.transform(SynthPYNQProject()) + model = model.transform(AnnotateResources("synth")) model.save(build_dir + "/end2end_tfc_w2a2_synth.onnx") @@ -283,7 +285,8 @@ def test_end2end_tfc_w2a2_run_on_pynq(): if ip == "": pytest.skip("PYNQ board IP address not specified") # produce results with npysim - sdp_node = getCustomOp(parent_model.graph.node[2]) + sdp_node = parent_model.get_nodes_by_op_type("StreamingDataflowPartition")[0] + sdp_node = getCustomOp(sdp_node) sdp_node.set_nodeattr("model", build_dir + "/end2end_tfc_w2a2_pynq_deploy.onnx") ret = execute_onnx(parent_model, {iname: x}, True) y = ret[oname] diff --git a/tests/fpgadataflow/test_fpgadataflow_ip_stitch.py b/tests/fpgadataflow/test_fpgadataflow_ip_stitch.py index 4a81977d49d174f66e1a02140a7643bd352db7a2..1c5ae02e4c662f48be4f7f70b9de24a1f9f72ecf 100644 --- a/tests/fpgadataflow/test_fpgadataflow_ip_stitch.py +++ b/tests/fpgadataflow/test_fpgadataflow_ip_stitch.py @@ -286,13 +286,13 @@ def test_fpgadataflow_ipstitch_pynq_driver(): def test_fpgadataflow_ipstitch_pynq_deployment_folder(): - model = ModelWrapper( - ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_driver.onnx" - ) try: ip = os.environ["PYNQ_IP"] # no default for this one; skip if not defined if ip == "": pytest.skip("PYNQ board IP address not specified") + model = ModelWrapper( + ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_driver.onnx" + ) username = os.getenv("PYNQ_USERNAME", "xilinx") password = os.getenv("PYNQ_PASSWORD", "xilinx") target_dir = os.getenv("PYNQ_TARGET_DIR", "/home/xilinx/finn") @@ -319,13 +319,13 @@ def test_fpgadataflow_ipstitch_pynq_deployment_folder(): def test_fpgadataflow_ipstitch_remote_execution(): - model = ModelWrapper( - ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_deployment.onnx" - ) try: ip = os.environ["PYNQ_IP"] # NOQA if ip == "": pytest.skip("PYNQ board IP address not specified") + model = ModelWrapper( + ip_stitch_model_dir + "/test_fpgadataflow_ipstitch_pynq_deployment.onnx" + ) idt = DataType.INT2 x = gen_finn_dt_tensor(idt, (1, 4)) input_dict = {"inp": x} diff --git a/tests/fpgadataflow/test_fpgadataflow_res_estimate.py b/tests/fpgadataflow/test_fpgadataflow_res_estimate.py index 0dd3fd7a9fefaaad9777ac98a35806a9eaa35188..38f792ed3cdd52044b28b4c19ac0603da4e502e6 100644 --- a/tests/fpgadataflow/test_fpgadataflow_res_estimate.py +++ b/tests/fpgadataflow/test_fpgadataflow_res_estimate.py @@ -92,7 +92,7 @@ def test_res_estimate(): model = model.transform(GiveUniqueNodeNames()) prod_resource_estimation = model.analysis(res_estimation) expect_resource_estimation = { - "StreamingFCLayer_Batch_0": ["BRAMs: 1", "LUTs: 304.4"] + "StreamingFCLayer_Batch_0": {"BRAM_18K": 1, "LUT": 304.4} } assert check_two_dict_for_equality(