diff --git a/tests/analysis/test_topology_checks.py b/tests/analysis/test_topology_checks.py
index 34777081739135107f171dd4abc2722e65e03549..7c9a131f69c8ea7b511bdb3a7765b3b7633b4f40 100644
--- a/tests/analysis/test_topology_checks.py
+++ b/tests/analysis/test_topology_checks.py
@@ -26,11 +26,13 @@
 # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
+import os
 from pkgutil import get_data
 
 import onnx.helper as oh
 from onnx import TensorProto
-
+import brevitas.onnx as bo
+from finn.util.test import get_test_model_trained
 import finn.analysis.topology as ta
 from finn.core.modelwrapper import ModelWrapper
 from finn.transformation.infer_shapes import InferShapes
@@ -91,6 +93,9 @@ def test_node_inputs_in_expected_order():
 
 
 def test_nodes_in_expected_order():
+    # test analysis pass (nodes_in_expected_order) with different models
+
+    # test with data/onnx/finn-hls-model/tfc_w1_a1_after_conv_to_hls.onnx
     raw_m = get_data(
         "finn", "data/onnx/finn-hls-model/tfc_w1_a1_after_conv_to_hls.onnx"
     )
@@ -105,3 +110,96 @@ def test_nodes_in_expected_order():
     graph.node.append(first_node)
     ret = model.analysis(ta.nodes_in_expected_order)
     assert ret["nodes_in_expected_order"] is False
+
+    # test with data/onnx/mnist-conv/model.onnx
+    raw_m = get_data("finn", "data/onnx/mnist-conv/model.onnx")
+    model = ModelWrapper(raw_m)
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is True
+
+    # remove first node and add it at the end
+    graph = model.graph
+    first_node = graph.node[0]
+    graph.node.remove(first_node)
+    graph.node.append(first_node)
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is False
+
+    # test with manually created small network
+    Neg_node = oh.make_node("Neg", inputs=["in1"], outputs=["neg1"],)
+    Round_node = oh.make_node("Round", inputs=["neg1"], outputs=["round1"],)
+
+    Ceil_node = oh.make_node("Ceil", inputs=["neg1"], outputs=["ceil1"],)
+    Add_node = oh.make_node("Add", inputs=["round1", "ceil1"], outputs=["out1"],)
+
+    in1 = oh.make_tensor_value_info("in1", TensorProto.FLOAT, [4, 4])
+    out1 = oh.make_tensor_value_info("out1", TensorProto.FLOAT, [4, 4])
+
+    graph = oh.make_graph(
+        nodes=[Neg_node, Round_node, Ceil_node, Add_node],
+        name="simple_graph",
+        inputs=[in1],
+        outputs=[out1],
+        value_info=[
+            oh.make_tensor_value_info("neg1", TensorProto.FLOAT, [4, 4]),
+            oh.make_tensor_value_info("round1", TensorProto.FLOAT, [4, 4]),
+            oh.make_tensor_value_info("ceil1", TensorProto.FLOAT, [4, 4]),
+        ],
+    )
+
+    onnx_model = oh.make_model(graph, producer_name="simple-model")
+    model = ModelWrapper(onnx_model)
+
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is True
+
+    # create same graph but with "wrong" node order
+    graph = oh.make_graph(
+        nodes=[Round_node, Ceil_node, Neg_node, Add_node],
+        name="simple_graph",
+        inputs=[in1],
+        outputs=[out1],
+        value_info=[
+            oh.make_tensor_value_info("neg1", TensorProto.FLOAT, [4, 4]),
+            oh.make_tensor_value_info("round1", TensorProto.FLOAT, [4, 4]),
+            oh.make_tensor_value_info("ceil1", TensorProto.FLOAT, [4, 4]),
+        ],
+    )
+
+    onnx_model = oh.make_model(graph, producer_name="simple-model")
+    model = ModelWrapper(onnx_model)
+
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is False
+
+    # test with data/onnx/finn-hls-model/finn-hls-onnx-model.onnx
+    raw_m = get_data("finn", "data/onnx/finn-hls-model/finn-hls-onnx-model.onnx")
+    model = ModelWrapper(raw_m)
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is True
+
+    # remove first node and add it at the end
+    graph = model.graph
+    first_node = graph.node[0]
+    graph.node.remove(first_node)
+    graph.node.append(first_node)
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is False
+
+    # test with cnv_w1a1
+    build_dir = "/tmp/" + os.environ["FINN_INST_NAME"]
+    cnv = get_test_model_trained("CNV", 1, 1)
+    bo.export_finn_onnx(
+        cnv, (1, 3, 32, 32), build_dir + "/end2end_cnv_w1a1_export.onnx"
+    )
+    model = ModelWrapper(build_dir + "/end2end_cnv_w1a1_export.onnx")
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is True
+
+    # remove first node and add it at the end
+    graph = model.graph
+    first_node = graph.node[0]
+    graph.node.remove(first_node)
+    graph.node.append(first_node)
+    ret = model.analysis(ta.nodes_in_expected_order)
+    assert ret["nodes_in_expected_order"] is False