diff --git a/src/finn/custom_op/fpgadataflow/thresholding_batch.py b/src/finn/custom_op/fpgadataflow/thresholding_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..fa33c70218fab16f106da45e296f0d59ae4ea606 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/thresholding_batch.py @@ -0,0 +1,551 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from math import ceil +import os + +import numpy as np + +from onnx import TensorProto, helper +from finn.core.datatype import DataType +from finn.custom_op.fpgadataflow import HLSCustomOp +from finn.util.basic import interleave_matrix_outer_dim_from_partitions +from finn.util.data_packing import ( + npy_to_rtlsim_input, + numpy_to_hls_code, + rtlsim_output_to_npy, +) +from . import templates + +# ONNX i/o tensor shape assumptions for Thresholding: +# input 0 is the input tensor, shape (..., NumChannels) +# input 1 is the threshold tensor, shape (NumChannels, n_thres) +# output 0 is the output tensor, shape (..., NumChannels) - same as input +# the ... here can be any shape (representing groups of vectors) + + +class Thresholding_Batch(HLSCustomOp): + """Class that corresponds to finn-hls Thresholding_Batch function.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + self.decoupled_wrapper = templates.decoupled_wrapper + + def get_nodeattr_types(self): + my_attrs = { + "PE": ("i", True, 0), + "NumChannels": ("i", True, 0), + # string defining memory type + "ram_style": ("s", False, "distributed"), + # FINN DataTypes for inputs, weights, outputs + "inputDataType": ("s", True, ""), + "outputDataType": ("s", True, ""), + # input and output FIFO depths + "inFIFODepth": ("i", False, 0), + "outFIFODepth": ("i", False, 0), + # number of input vectors, examples: + # [1] is a single vector (like a FC layer with batch=1) + # [4] is four vectors (like a FC layer with batch=4) + # [1, 4, 4] is four * four vectors (like a conv layer with batch=1) + "numInputVectors": ("ints", False, [1]), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def calc_tmem(self): + """Calculates and returns TMEM.""" + mh = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + return mh // pe + + def make_shape_compatible_op(self, model): + oshape = self.get_normal_output_shape() + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + return helper.make_node( + "Constant", + inputs=[], + outputs=[self.onnx_node.output[0]], + value=helper.make_tensor( + name="const_tensor", + data_type=TensorProto.FLOAT, + dims=values.shape, + vals=values.flatten().astype(float), + ), + ) + + def infer_node_datatype(self, model): + node = self.onnx_node + # check input datatype against property + idt_name = self.get_input_datatype().name + exp_idt_name = self.get_nodeattr("inputDataType") + assert exp_idt_name == idt_name, "Bad input DataType for Thresholding layer" + # set output datatype from property + odt = self.get_output_datatype() + model.set_tensor_datatype(node.output[0], odt) + + def verify_node(self): + info_messages = [] + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + + # verify that "backend" is set to "fpgadataflow" + backend_value = self.get_nodeattr("backend") + if backend_value == "fpgadataflow": + info_messages.append("Attribute backend is set correctly") + else: + info_messages.append('Attribute backend should be set to "fpgadataflow"') + + # verify that all necessary attributes exist + # TODO collect automatically from get_nodeattr_types + try: + self.get_nodeattr("code_gen_dir_cppsim") + self.get_nodeattr("executable_path") + self.get_nodeattr("NumChannels") + self.get_nodeattr("PE") + self.get_nodeattr("inputDataType") + self.get_nodeattr("outputDataType") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The required Threshold_Batch attributes do not exist.""" + ) + + return info_messages + + def bram_estimation(self): + """Calculates BRAM cost if resource set to BRAM""" + style = self.get_nodeattr("ram_style") + P = self.get_nodeattr("PE") + idt = self.get_input_datatype() + A = idt.bitwidth() + tmem = self.calc_tmem() + + if style == "block" and tmem > 1: + return int(ceil(A * P / 16)) * int(ceil(tmem / 1024)) + else: + return 0 + + def lut_estimation(self): + """Calculates LUT cost, taking memory resource type into account """ + # TODO add in/out FIFO contributions + style = self.get_nodeattr("ram_style") + P = self.get_nodeattr("PE") + idt = self.get_input_datatype() + A = idt.bitwidth() + tmem = self.calc_tmem() + # cost of comparators + comparator_cost = A * P + # cost of LUTRAM + if style == "distributed" and tmem > 1: + lutram_cost = P * A * int(ceil(tmem / 64)) + else: + lutram_cost = 0 + # total cost + return comparator_cost + lutram_cost + + def get_input_datatype(self): + """Returns FINN DataType of input.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_output_datatype(self): + """Returns FINN DataType of output.""" + return DataType[self.get_nodeattr("outputDataType")] + + def get_instream_width(self): + i_bits = self.get_input_datatype().bitwidth() + return i_bits * self.get_nodeattr("PE") + + def get_outstream_width(self): + o_bits = self.get_output_datatype().bitwidth() + return o_bits * self.get_nodeattr("PE") + + def get_folded_input_shape(self): + ich = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + fold = ich // pe + vecs = list(self.get_nodeattr("numInputVectors")) + folded_input_shape = tuple(vecs + [fold, pe]) + return folded_input_shape + + def get_folded_output_shape(self): + # same shape as input + return self.get_folded_input_shape() + + def get_normal_input_shape(self): + ich = self.get_nodeattr("NumChannels") + vecs = list(self.get_nodeattr("numInputVectors")) + normal_input_shape = tuple(vecs + [ich]) + return normal_input_shape + + def get_normal_output_shape(self): + # same shape as input + return self.get_normal_input_shape() + + def get_number_output_values(self): + nf = np.prod(self.get_folded_output_shape()[:-1]) + return nf + + def get_template_param_values(self): + """Returns the template parameter values according to input, output and weight + data types.""" + ret = dict() + inp_hls_str = self.get_input_datatype().get_hls_datatype_str() + out_hls_str = self.get_output_datatype().get_hls_datatype_str() + # fill in TSrcI + ret["TSrcI"] = "Slice<%s>" % inp_hls_str + # fill in TDstI + ret["TDstI"] = "Slice<%s>" % out_hls_str + + return ret + + def get_hls_compatible_threshold_tensor(self, orig_thres_matrix): + """Convert the original numpy weight matrix orig_weight_matrix into + a form suitable for passing to the hlslib call: + * ensure MH % PE == 0 + * for unsigned inputs, ensure thresholds are positive + * interleave rows between PEs + * reshape into (PE, TMEM, n_thres_steps) and return + """ + mh = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + tmem = mh // pe + assert mh % pe == 0, "Requirement NumChannels divisable by PE is violated." + assert ( + orig_thres_matrix.ndim == 2 + ), """Threshold matrix dimension is + not as expected (2).""" + n_thres_steps = orig_thres_matrix.shape[1] + if not self.get_input_datatype().signed(): + # ensure all thresholds are nonnegative + assert (orig_thres_matrix >= 0).all() + # ensure all thresholds are integer + assert (orig_thres_matrix.astype(np.int32) == orig_thres_matrix).all() + ret = orig_thres_matrix + # ensure channels = mh , duplicating if necessary + if ret.shape[0] == 1: + ret = np.tile(ret, (mh, 1)) + assert ( + ret.shape[0] == mh + ), "Channels of threshold matrix are not as expected (mh)" + # distribute rows between PEs + ret = interleave_matrix_outer_dim_from_partitions(ret, pe) + assert ( + ret.shape[0] == pe + ), """First dimension after distribution of the + rows between PEs is not as expected (pe)""" + assert ( + ret.shape[1] == tmem + ), """Second dimension after distribution of the + rows between PEs is not as expected (tmem)""" + assert ( + ret.shape[2] == n_thres_steps + ), """Third dimension after distribution of the + rows between PEs is not as expected (n_thres_steps)""" + return ret.reshape(1, pe, tmem, n_thres_steps) + + def generate_params(self, model, path): + code_gen_dir = path + # save thresholds in thresh.h + thresholds = model.get_initializer(self.onnx_node.input[1]) + + threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds) + tdt = DataType.INT32 + thresholds_hls_code = numpy_to_hls_code( + threshold_tensor, tdt, "thresholds", False, True + ) + # write thresholds into thresh.h + f_thresh = open("{}/thresh.h".format(code_gen_dir), "w") + tdt_hls = tdt.get_hls_datatype_str() + # use binary to export bipolar activations + export_odt = self.get_output_datatype() + if self.get_output_datatype() == DataType.BIPOLAR: + export_odt = DataType.BINARY + odt_hls = export_odt.get_hls_datatype_str() + f_thresh.write( + "static ThresholdsActivation<{},{},{},{},{},{},{}> threshs \ + = ".format( + self.calc_tmem(), + self.get_nodeattr("PE"), + threshold_tensor.shape[-1], + tdt_hls, + odt_hls, + export_odt.min(), + "std::less_equal<%s>" % tdt_hls, + ) + ) + f_thresh.write(thresholds_hls_code) + f_thresh.close() + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + + # TODO ensure codegen dir exists + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + # create a npy file fore each input of the node (in_ind is input index) + in_ind = 0 + for inputs in node.input: + # it is assumed that the first input of the node is the data input + # the second input are the weights + # the third input are the thresholds + if in_ind == 0: + assert ( + str(context[inputs].dtype) == "float32" + ), """Input datatype is + not float32 as expected.""" + expected_inp_shape = self.get_folded_input_shape() + reshaped_input = context[inputs].reshape(expected_inp_shape) + if self.get_input_datatype() == DataType.BIPOLAR: + # store bipolar activations as binary + reshaped_input = (reshaped_input + 1) / 2 + export_idt = DataType.BINARY + else: + export_idt = self.get_input_datatype() + # make copy before saving the array + reshaped_input = reshaped_input.copy() + np.save( + os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), + reshaped_input, + ) + elif in_ind > 2: + raise Exception("Unexpected input found for StreamingFCLayer") + in_ind += 1 + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_output(context) + # reinterpret binary output as bipolar where needed + if self.get_output_datatype() == DataType.BIPOLAR: + out = context[node.output[0]] + out = 2 * out - 1 + context[node.output[0]] = out + assert ( + context[node.output[0]].shape == self.get_folded_output_shape() + ), """Output shape is not as expected""" + # reshape output to have expected shape + oshape = self.get_normal_output_shape() + context[node.output[0]] = context[node.output[0]].reshape(*oshape) + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + inp = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + output = self.rtlsim(sim, inp) + odt = self.get_output_datatype() + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_npy_path = "{}/output.npy".format(code_gen_dir) + out_shape = self.get_folded_output_shape() + rtlsim_output_to_npy( + output, out_npy_path, odt, out_shape, packed_bits, target_bits + ) + + # load and reshape output + output = np.load(out_npy_path) + oshape = self.get_normal_output_shape() + output = np.asarray([output], dtype=np.float32).reshape(*oshape) + context[node.output[0]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = ['#include "activations.hpp"'] + self.code_gen_dict["$GLOBALS$"] += ['#include "thresh.h"'] + + # TODO check and add whatever missing + def defines(self, var): + numInputVectors = list(self.get_nodeattr("numInputVectors")) + numReps = numInputVectors[0] + self.code_gen_dict["$DEFINES$"] = [ + """#define NumChannels1 {}\n #define PE1 {}\n #define numReps {}""".format( + self.get_nodeattr("NumChannels"), self.get_nodeattr("PE"), numReps, + ) + ] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_input_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"] = [] + # note: the innermost dim is reversed for the input + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0, false);' + % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width()) + ) + + def docompute(self): + tmpl_args = self.get_template_param_values() + # TODO: why put some template parameters into defines and not others? + # should ImgDim be defined or just filled in here like we do now? + node = self.onnx_node + ishape = self.get_folded_input_shape() + if len(ishape) == 3: + imgdim = 1 + elif len(ishape) == 5: + imgdim = ishape[1] + else: + raise Exception("""Unexpeted input shape""") + self.code_gen_dict["$DOCOMPUTE$"] = [ + """{}<{}, NumChannels1, PE1, {}, {}> + (in0, out, threshs, numReps);""".format( + node.op_type, imgdim, tmpl_args["TSrcI"], tmpl_args["TDstI"], + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + if dtype == DataType.BIPOLAR: + # use binary for bipolar storage + dtype = DataType.BINARY + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output.npy" % code_gen_dir + shape = self.get_folded_output_shape() + shape_cpp_str = str(shape).replace("(", "{").replace(")", "}") + + # note: the innermost dim is not reversed for the output + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s", false);' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + shape_cpp_str, + npy_out, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + """void {}(hls::stream<ap_uint<{}>> &in0, + hls::stream<ap_uint<{}>> &out + )""".format( + self.onnx_node.name, + self.get_instream_width(), + self.get_outstream_width(), + ) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) + + # the threshold tensor is acc_type [PE][TMEM][N_THRES] + # partition for parallel access along PE and N_THRES + # dimensions (dims 1 and 3) + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds " + "complete dim=1" + ) + ) + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds " + "complete dim=3" + ) + ) + # set resource type + ram_style = self.get_nodeattr("ram_style") + pe = self.get_nodeattr("PE") + ich = self.get_nodeattr("NumChannels") + # if PE less than NumChannels, assign cores according to ram_style; + # otherwise if PE == NumChannels, Vivado HLS will unroll to FFs + if pe < ich: + if ram_style == "distributed": + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS RESOURCE variable=threshs.m_thresholds " + "core=ROM_2P_LUTRAM" + ) + ) + elif ram_style == "block": + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS RESOURCE variable=threshs.m_thresholds " + "core=ROM_2P_BRAM" + ) + ) + else: + raise Exception( + """Invalid value for attribute ram_style! Is currently set to: {} + has to be set to one of ("block", "distributed")""".format( + ram_style + ) + ) diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py index 949fdd51df2710fd2361e5f599edf1f6c29a633f..0d62862c222b44d2e507a90a80bfcd4fa405d3fe 100644 --- a/src/finn/custom_op/registry.py +++ b/src/finn/custom_op/registry.py @@ -44,6 +44,7 @@ from finn.custom_op.fpgadataflow.streamingdatawidthconverter_batch import ( StreamingDataWidthConverter_Batch, ) from finn.custom_op.fpgadataflow.globalaccpool_batch import GlobalAccPool_Batch +from finn.custom_op.fpgadataflow.thresholding_batch import Thresholding_Batch from finn.custom_op.fpgadataflow.addstreams_batch import AddStreams_Batch from finn.custom_op.fpgadataflow.labelselect_batch import LabelSelect_Batch from finn.custom_op.fpgadataflow.duplicatestreams_batch import DuplicateStreams_Batch @@ -63,6 +64,7 @@ custom_op["MaxPoolNHWC"] = MaxPoolNHWC custom_op["StreamingDataWidthConverter_Batch"] = StreamingDataWidthConverter_Batch custom_op["StreamingFIFO"] = StreamingFIFO custom_op["GlobalAccPool_Batch"] = GlobalAccPool_Batch +custom_op["Thresholding_Batch"] = Thresholding_Batch custom_op["AddStreams_Batch"] = AddStreams_Batch custom_op["LabelSelect_Batch"] = LabelSelect_Batch custom_op["DuplicateStreams_Batch"] = DuplicateStreams_Batch diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py index dbd98623c4cdf5baca9fa9c137debf8be0f70981..3ff86cab48d365c10e69bc2c764e8083c6a36880 100644 --- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py +++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py @@ -33,6 +33,7 @@ from finn.transformation import Transformation from finn.custom_op.registry import getCustomOp from finn.transformation.infer_shapes import InferShapes from finn.transformation.infer_datatypes import InferDataTypes +import finn.core.data_layout as DataLayout class InferConvInpGen(Transformation): @@ -398,3 +399,59 @@ class InferQuantizedStreamingFCLayer(Transformation): model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified) + + +class InferThresholdingLayer(Transformation): + """Convert any MultiThreshold into a standalone thresholding HLS layer.""" + + def apply(self, model): + graph = model.graph + node_ind = 0 + graph_modified = False + for node in graph.node: + node_ind += 1 + if node.op_type == "MultiThreshold": + thl_input = node.input[0] + thl_threshold = node.input[1] + thl_output = node.output[0] + thl_in_shape = model.get_tensor_shape(thl_input) + idt = model.get_tensor_datatype(thl_input) + + # skip conversion for layers with float input + if not idt.is_integer(): + continue + + # skip conversion if input is not NHWC or NC + thl_in_layout = model.get_tensor_layout(thl_input) + if thl_in_layout != DataLayout.NHWC and thl_in_layout != DataLayout.NC: + continue + + # now safe to assume number of channels is in last dimension + ifc = int(thl_in_shape[-1]) + # create node with no parallelization first + pe = 1 + assert ifc % pe == 0, "Requirement IFC divisable by PE is violated." + + odt = model.get_tensor_datatype(thl_output) + # create and insert new StreamingFCLayer node + new_node = helper.make_node( + "Thresholding_Batch", + [thl_input, thl_threshold], + [thl_output], + domain="finn", + backend="fpgadataflow", + NumChannels=ifc, + PE=pe, + inputDataType=idt.name, + outputDataType=odt.name, + numInputVectors=list(thl_in_shape[:-1]), + ) + graph.node.insert(node_ind, new_node) + # remove old node + graph.node.remove(node) + graph_modified = True + + if graph_modified: + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + return (model, graph_modified) diff --git a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py index e03090f0581eebf68cac7baffb6888a6992df68d..48803c9614f53a3a149c6eaac4289d10086513a5 100644 --- a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py +++ b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py @@ -39,6 +39,7 @@ from finn.core.modelwrapper import ModelWrapper from finn.transformation.fold_constants import FoldConstants from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_data_layouts import InferDataLayouts from finn.transformation.streamline import Streamline from finn.util.test import get_test_model_trained from finn.transformation.double_to_single_float import DoubleToSingleFloat @@ -54,7 +55,9 @@ export_onnx_path_cnv = "test_output_cnv.onnx" @pytest.mark.vivado -def test_convert_to_hls_layers_cnv_w1a1(): +# Standalone or fused thresholding-based activation +@pytest.mark.parametrize("fused_activation", [True, False]) +def test_convert_to_hls_layers_cnv_w1a1(fused_activation): cnv = get_test_model_trained("CNV", 1, 1) bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv) model = ModelWrapper(export_onnx_path_cnv) @@ -69,6 +72,7 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) model = model.transform(ConvertBipolarMatMulToXnorPopcount()) model = model.transform(Streamline()) + model = model.transform(InferDataLayouts()) # model.save("golden.onnx") # load one of the test vectors fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") @@ -80,6 +84,10 @@ def test_convert_to_hls_layers_cnv_w1a1(): expected_ctx = oxe.execute_onnx(model, input_dict, True) expected = expected_ctx[model.graph.output[0].name] + # if we infer thresholding first, all MultiThresholds get converted to HLS + # subsequently, the FC inference will generate passthrough MVAUs + if not fused_activation: + model = model.transform(to_hls.InferThresholdingLayer()) model = model.transform(to_hls.InferBinaryStreamingFCLayer()) model = model.transform(to_hls.InferQuantizedStreamingFCLayer()) for node in model.graph.node: @@ -102,7 +110,12 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(to_hls.InferStreamingMaxPool()) # check topology status finn_nodes = model.get_finn_nodes() - assert len(finn_nodes) == 18 + if fused_activation: + assert len(finn_nodes) == 18 + else: + assert len(finn_nodes) == 26 + thr_nodes = model.get_nodes_by_op_type("Thresholding_Batch") + assert len(thr_nodes) == 8 non_finn_nodes = model.get_non_finn_nodes() assert len(non_finn_nodes) == 4 exp_non_finn_nodes = ["Transpose", "Reshape", "Mul", "Add"] diff --git a/tests/fpgadataflow/test_fpgadataflow_thresholding.py b/tests/fpgadataflow/test_fpgadataflow_thresholding.py new file mode 100644 index 0000000000000000000000000000000000000000..50b990f13494f22e985406791445b406e9946147 --- /dev/null +++ b/tests/fpgadataflow/test_fpgadataflow_thresholding.py @@ -0,0 +1,154 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest + +import numpy as np +from onnx import TensorProto, helper + +import finn.core.onnx_exec as oxe +from finn.analysis.fpgadataflow.hls_synth_res_estimation import hls_synth_res_estimation +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.custom_op.multithreshold import multithreshold +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( + ReplaceVerilogRelPaths, +) + + +def make_single_thresholding_modelwrapper(T, pe, idt, odt): + NumChannels = T.shape[0] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, NumChannels]) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, NumChannels]) + + node_inp_list = ["inp", "thresh"] + + Thresholding_node = helper.make_node( + "Thresholding_Batch", + node_inp_list, + ["outp"], + domain="finn", + backend="fpgadataflow", + NumChannels=NumChannels, + PE=pe, + inputDataType=idt.name, + outputDataType=odt.name, + ) + graph = helper.make_graph( + nodes=[Thresholding_node], + name="thresholding_graph", + inputs=[inp], + outputs=[outp], + ) + + model = helper.make_model(graph, producer_name="thresholding-model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", idt) + model.set_tensor_datatype("outp", odt) + + model.set_tensor_datatype("thresh", idt) + model.set_initializer("thresh", T) + return model + + +# activation: None or DataType +@pytest.mark.parametrize("act", [DataType.INT4, DataType.BIPOLAR]) +# input datatype +@pytest.mark.parametrize("idt", [DataType.INT16, DataType.UINT16]) +# folding, -1 is maximum possible +@pytest.mark.parametrize("nf", [-1, 2, 1]) +# number of input features +@pytest.mark.parametrize("ich", [16]) +# execution mode +@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +@pytest.mark.vivado +@pytest.mark.slow +def test_fpgadataflow_thresholding(idt, act, nf, ich, exec_mode): + if nf == -1: + nf = ich + pe = ich // nf + assert ich % pe == 0 + + # generate input data + x = gen_finn_dt_tensor(idt, (1, ich)) + + odt = act + n_steps = act.get_num_possible_values() - 1 + T = np.random.randint(idt.min(), idt.max() + 1, (ich, n_steps)).astype(np.float32) + # provide non-decreasing thresholds + T = np.sort(T, axis=1) + + model = make_single_thresholding_modelwrapper(T, pe, idt, odt) + + if exec_mode == "cppsim": + model = model.transform(PrepareCppSim()) + model = model.transform(CompileCppSim()) + model = model.transform(SetExecMode("cppsim")) + elif exec_mode == "rtlsim": + model = model.transform(SetExecMode("rtlsim")) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(PrepareIP("xc7z020clg400-1", 5)) + model = model.transform(HLSSynthIP()) + model = model.transform(ReplaceVerilogRelPaths()) + model = model.transform(PrepareRTLSim()) + else: + raise Exception("Unknown exec_mode") + + # package input data as dictionary + input_dict = {"inp": x} + + y = multithreshold(x, T) + if act == DataType.BIPOLAR: + # binary to bipolar + y = 2 * y - 1 + else: + # signed offset + y += act.min() + + oshape = model.get_tensor_shape("outp") + y_expected = y.reshape(oshape) + # execute model + y_produced = oxe.execute_onnx(model, input_dict)["outp"] + + y_produced = y_produced.reshape(y_expected.shape) + + assert (y_produced == y_expected).all(), "cppsim failed" + + if exec_mode == "rtlsim": + hls_synt_res_est = model.analysis(hls_synth_res_estimation) + assert "Thresholding_Batch_0" in hls_synt_res_est