diff --git a/tests/fpgadataflow/test_fpgadataflow_vvau.py b/tests/fpgadataflow/test_fpgadataflow_vvau.py index c48448787d8a3bb926c1e94850be6e99e8c106d3..5adc9ef3db413933fba8baf0ed51924f56b430ab 100644 --- a/tests/fpgadataflow/test_fpgadataflow_vvau.py +++ b/tests/fpgadataflow/test_fpgadataflow_vvau.py @@ -75,7 +75,19 @@ def _calculate_dot_prod_range(dt_a, dt_b, len): def _make_single_vvau_modelwrapper( - W, pe, k_h, k_w, channels, dim_h, dim_w, wdt, idt, odt, T=None, tdt=None + W, + pe, + k_h, + k_w, + channels, + dim_h, + dim_w, + wdt, + idt, + odt, + T=None, + tdt=None, + mem_mode="const", ): in_shape = [1, dim_h, dim_w, k_h * k_w * channels] # [N, H, W, K*K*CH] out_shape = [ @@ -113,6 +125,7 @@ def _make_single_vvau_modelwrapper( weightDataType=wdt.name, outputDataType=odt.name, noActivation=no_act, + mem_mode=mem_mode, ) graph = helper.make_graph( @@ -156,13 +169,15 @@ def prepare_inputs(input_tensor): @pytest.mark.parametrize("k_w", [3, 1]) # Number of input and output channels @pytest.mark.parametrize("channels", [3, 4]) +# memory mode +@pytest.mark.parametrize("mem_mode", ["const", "decoupled"]) # execution mode @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.fpgadataflow @pytest.mark.slow @pytest.mark.vivado def test_fpgadataflow_vvau( - idt, wdt, act, pe, dim_h, dim_w, k_h, k_w, channels, exec_mode + idt, wdt, act, pe, dim_h, dim_w, k_h, k_w, channels, mem_mode, exec_mode ): if pe == "channels": pe = channels @@ -198,7 +213,7 @@ def test_fpgadataflow_vvau( tdt = DataType["INT32"] model = _make_single_vvau_modelwrapper( - W, pe, k_h, k_w, channels, dim_h, dim_w, wdt, idt, odt, T, tdt + W, pe, k_h, k_w, channels, dim_h, dim_w, wdt, idt, odt, T, tdt, mem_mode ) if exec_mode == "cppsim":