diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index 72aa322e0e44a6f4a5c11025d94bdfeb820338a3..73bc573c5e01d332bb731d00d3b051a4fc583dbd 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -605,7 +605,6 @@ class StreamingFCLayer_Batch(HLSCustomOp): thresholds = model.get_initializer(self.onnx_node.input[2]) if thresholds is not None: threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds) - tdt = DataType.INT32 # use UINT32 threshold export for bipolar times bipolar inp_is_bipolar = self.get_input_datatype() == DataType.BIPOLAR wt_is_bipolar = self.get_weight_datatype() == DataType.BIPOLAR @@ -615,11 +614,44 @@ class StreamingFCLayer_Batch(HLSCustomOp): bin_xnor_mode = self.get_nodeattr("binaryXnorMode") == 1 inp_is_bipolar = inp_is_bipolar or (inp_is_binary and bin_xnor_mode) wt_is_bipolar = wt_is_bipolar or (wt_is_binary and bin_xnor_mode) - if inp_is_bipolar and wt_is_bipolar: - tdt = DataType.UINT32 + # set threshold datatype (and accumulator datatype implicitly) + min_threshold = thresholds.min() + max_threshold = thresholds.max() + min_weight = weights.min() + max_weight = weights.max() + perceptive_field_elems = self.get_nodeattr("MW") + min_input = self.get_input_datatype().min() + max_input = self.get_input_datatype().max() + # calculate minimum and maximum values of accumulator + # assume inputs span the whole range of the input datatype + acc_min = perceptive_field_elems * min( + min_weight * max_input, + min_weight * min_input, + max_weight * max_input, + max_weight * min_input, + ) + acc_max = perceptive_field_elems * max( + min_weight * max_input, + min_weight * min_input, + max_weight * max_input, + max_weight * min_input, + ) + + # get range required by threshold values + tdt_min = min(acc_min, min_threshold) + tdt_max = max(acc_max, max_threshold) + if tdt_min < 0: + if abs(tdt_min) > tdt_max: + tdt = DataType.get_smallest_possible(tdt_min) + else: + tdt = DataType.get_smallest_possible(0 - tdt_max) + else: + tdt = DataType.get_smallest_possible(tdt_max) + assert np.vectorize(tdt.allowed)( threshold_tensor - ).all(), "Thresholds are not int" + ).all(), "Thresholds can't be expressed with type %s" % str(tdt) + thresholds_hls_code = numpy_to_hls_code( threshold_tensor, tdt, "thresholds", False, True ) diff --git a/src/finn/custom_op/fpgadataflow/thresholding_batch.py b/src/finn/custom_op/fpgadataflow/thresholding_batch.py index 379ebd92d86d54c6bc621c7f89b01eacba2b5d3f..562bab0f18990096f7364b3a4e2bcbbbf4ce2b58 100644 --- a/src/finn/custom_op/fpgadataflow/thresholding_batch.py +++ b/src/finn/custom_op/fpgadataflow/thresholding_batch.py @@ -283,10 +283,25 @@ class Thresholding_Batch(HLSCustomOp): thresholds = model.get_initializer(self.onnx_node.input[1]) threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds) - tdt = DataType.INT32 + + min_threshold = thresholds.min() + max_threshold = thresholds.max() + min_input = self.get_input_datatype().min() + max_input = self.get_input_datatype().max() + # get range required by threshold values + tdt_min = min(min_input, min_threshold) + tdt_max = max(max_input, max_threshold) + if tdt_min < 0: + if abs(tdt_min) > tdt_max: + tdt = DataType.get_smallest_possible(tdt_min) + else: + tdt = DataType.get_smallest_possible(0 - tdt_max - 1) + else: + tdt = DataType.get_smallest_possible(tdt_max) assert np.vectorize(tdt.allowed)( threshold_tensor - ).all(), "Thresholds are not int" + ).all(), "Thresholds can't be expressed with type %s" % str(tdt) + thresholds_hls_code = numpy_to_hls_code( threshold_tensor, tdt, "thresholds", False, True ) diff --git a/src/finn/transformation/streamline/round_thresholds.py b/src/finn/transformation/streamline/round_thresholds.py index c33281d85449c173a4631297fd1d67ac0aed8c81..8626ef40619b067c6672c9017ddcb747998c3f2c 100644 --- a/src/finn/transformation/streamline/round_thresholds.py +++ b/src/finn/transformation/streamline/round_thresholds.py @@ -51,10 +51,20 @@ class RoundAndClipThresholds(Transformation): model.set_tensor_datatype(n.input[1], idtype) graph_modified = True if idtype.is_integer() and not idtype.signed() and (Tnew < 0).any(): - # clip any negative thresholds + # clip any negative thresholds if input is unsigned Tnew = np.clip(Tnew, 0, None) model.set_initializer(n.input[1], Tnew) # use same datatype as inputs for thresholds model.set_tensor_datatype(n.input[1], idtype) graph_modified = True + if idtype.is_integer() and ( + (Tnew < (idtype.min() - 1)).any() + or (Tnew > (idtype.max() + 1)).any() + ): + # clip any large thresholds to input range + 1 + Tnew = np.clip(Tnew, idtype.min() - 1, idtype.max() + 1) + model.set_initializer(n.input[1], Tnew) + # use same datatype as inputs for thresholds + model.set_tensor_datatype(n.input[1], idtype) + graph_modified = True return (model, graph_modified)