diff --git a/src/finn/transformation/streamline/reorder.py b/src/finn/transformation/streamline/reorder.py index a1bd16f6d0b70193122d5d067ccdee395260c7b1..cc95d34b784b47c9baeb6c1076915db8b1d09d57 100644 --- a/src/finn/transformation/streamline/reorder.py +++ b/src/finn/transformation/streamline/reorder.py @@ -32,6 +32,7 @@ from onnx import helper as oh from finn.transformation import Transformation from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_data_layouts import InferDataLayouts from finn.core.datatype import DataType from finn.core.onnx_exec import execute_node from finn.util.basic import get_by_name @@ -68,8 +69,11 @@ class MoveAddPastMul(Transformation): add_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) B = model.get_initializer(add_weight_name) - assert A is not None, "Initializer for mul weights is not set." - assert B is not None, "Initializer for add weights is not set." + if (A is None) or (B is None): + warnings.warn( + "Mul or add does not have constant params, skipping" + ) + continue start_name = n.input[0] middle_name = n.output[0] end_name = consumer.output[0] @@ -124,8 +128,9 @@ class MoveScalarMulPastMatMul(Transformation): matmul_weight_name = consumer.input[1] A = model.get_initializer(mul_weight_name) W = model.get_initializer(matmul_weight_name) - assert A is not None, "Initializer for mul weights is not set." - assert W is not None, "Initializer for matmul weights is not set." + if (A is None) or (W is None): + warnings.warn("MatMul or Mul params are not constant, skipping") + continue start_name = n.input[0] middle_name = n.output[0] end_name = consumer.output[0] @@ -181,8 +186,9 @@ class MoveScalarAddPastMatMul(Transformation): matmul_weight_name = consumer.input[1] A = model.get_initializer(add_weight_name) W = model.get_initializer(matmul_weight_name) - assert A is not None, "Initializer for add weights is not set." - assert W is not None, "Initializer for matmul weights is not set." + if (A is None) or (W is None): + warnings.warn("MatMul or Add params are not constant, skipping") + continue start_name = n.input[0] middle_name = n.output[0] end_name = consumer.output[0] @@ -243,7 +249,9 @@ class MoveScalarAddPastConv(Transformation): conv_in_name = consumer.input[0] conv_in_shape = model.get_tensor_shape(conv_in_name) A = model.get_initializer(add_weight_name) - assert A is not None, "Initializer for add weights is not set." + if A is None: + warnings.warn("Add param is not constant, skipping") + continue start_name = n.input[0] end_name = consumer.output[0] conv_out_shape = model.get_tensor_shape(end_name) @@ -311,7 +319,9 @@ class MoveScalarMulPastConv(Transformation): ): mul_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) - assert A is not None, "Initializer for mul weights is not set." + if A is None: + warnings.warn("Mul param is not constant, skipping") + continue conv_node = consumer mul_node = n start_name = mul_node.input[0] @@ -663,3 +673,66 @@ class MoveMaxPoolPastMultiThreshold(Transformation): model = model.transform(InferShapes()) return (model, graph_modified) + + +class MoveTransposePastScalarMul(Transformation): + """Moves a Transpose node past a scalar Mul node""" + + def apply(self, model): + graph = model.graph + node_ind = 0 + graph_modified = False + for n in graph.node: + node_ind += 1 + if ( + n.op_type == "Transpose" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): + consumer = model.find_consumer(n.output[0]) + if ( + consumer is not None + and consumer.op_type == "Mul" + and not model.is_join_node(consumer) + ): + mul_weight_name = consumer.input[1] + A = model.get_initializer(mul_weight_name) + if A is None: + warnings.warn("Mul param is not constant, skipping") + continue + transp_node = n + mul_node = consumer + start_name = transp_node.input[0] + middle_name = transp_node.output[0] + end_name = mul_node.output[0] + transp_in_shape = model.get_tensor_shape(start_name) + transp_out_shape = model.get_tensor_shape(middle_name) + transp_in_layout = model.get_tensor_layout(start_name) + transp_out_layout = model.get_tensor_layout(middle_name) + if transp_in_layout is None or transp_out_layout is None: + warnings.warn( + """Datalayout is not set for tensors. + Transformation can't be applied.""" + ) + continue + if all(x == 1 for x in A.shape): + # if the mul is scalar, we can simply swap the order of ops + # rewire transpose input to be mul input + mul_node.input[0] = start_name + model.set_tensor_shape(start_name, transp_in_shape) + model.set_tensor_layout(start_name, transp_in_layout) + mul_node.output[0] = middle_name + model.set_tensor_shape(middle_name, transp_in_shape) + model.set_tensor_layout(middle_name, transp_in_layout) + transp_node.input[0] = middle_name + transp_node.output[0] = end_name + model.set_tensor_shape(end_name, transp_out_shape) + model.set_tensor_layout(end_name, transp_out_layout) + graph.node.remove(transp_node) + graph.node.insert(node_ind, transp_node) + graph_modified = True + + if graph_modified is True: + model = model.transform(InferDataLayouts()) + model = model.transform(InferShapes()) + return (model, graph_modified) diff --git a/tests/transformation/test_move_transpose_past_scalar_mul.py b/tests/transformation/test_move_transpose_past_scalar_mul.py new file mode 100644 index 0000000000000000000000000000000000000000..e434fc7d4f683120176e18a2bfa9da99d9ee0b0e --- /dev/null +++ b/tests/transformation/test_move_transpose_past_scalar_mul.py @@ -0,0 +1,82 @@ +import pytest + +import numpy as np +from onnx import TensorProto, helper + +from finn.core.modelwrapper import ModelWrapper +import finn.core.data_layout as DataLayout +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_data_layouts import InferDataLayouts +from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames +from finn.transformation.streamline.reorder import MoveTransposePastScalarMul +import finn.core.onnx_exec as oxe + +# permutation of transpose node +@pytest.mark.parametrize("perm", [[0, 2, 3, 1], [0, 1, 3, 2], [3, 2, 0, 1]]) +# scalar mul +@pytest.mark.parametrize("scalar", [True, False]) +# data layout +@pytest.mark.parametrize("data_layout", [None, DataLayout.NHWC, DataLayout.NCHW]) +def test_move_transpose_past_scalar_mul(perm, scalar, data_layout): + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, 2, 3, 4]) + # to determine out_size we need to calculate with "perm" for this test case + dummy_in = np.random.uniform(low=0, high=1, size=(1, 2, 3, 4)).astype(np.float32) + out_size = dummy_in.transpose(tuple(perm)).shape + + if scalar is True: + a0_size = [] + else: + a0_size = out_size + a0 = helper.make_tensor_value_info("a0", TensorProto.FLOAT, a0_size) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, out_size) + transp_node = helper.make_node("Transpose", ["inp"], ["transp_out"], perm=perm) + mul_node = helper.make_node("Mul", ["transp_out", "a0"], ["outp"]) + + graph = helper.make_graph( + nodes=[transp_node, mul_node], + name="mv-transpose-graph", + inputs=[inp], + outputs=[outp], + value_info=[a0], + ) + + model = helper.make_model(graph, producer_name="mv_transpose_model") + model = ModelWrapper(model) + + # initialize values + a0_values = np.random.uniform(low=0, high=1, size=tuple(a0_size)).astype(np.float32) + model.set_initializer("a0", a0_values) + if data_layout is not None: + model.set_tensor_layout("inp", data_layout) + model = model.transform(InferDataLayouts()) + + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + + # compare execution before and after transformation + inp_values = np.random.uniform(low=0, high=1, size=(1, 2, 3, 4)).astype(np.float32) + idict = {model.graph.input[0].name: inp_values} + model_transformed = model.transform(MoveTransposePastScalarMul()) + assert oxe.compare_execution(model, model_transformed, idict) + + # check if order changed + if scalar is True and data_layout is not None: + assert model_transformed.graph.node[0] != model.graph.node[0] + assert model_transformed.graph.node[1] != model.graph.node[1] + assert model_transformed.graph.node[0].op_type == "Mul" + assert model_transformed.graph.node[1].op_type == "Transpose" + mul_input = model_transformed.graph.node[0].input[0] + mul_output = model_transformed.graph.node[0].output[0] + assert model_transformed.get_tensor_layout(mul_input) == data_layout + assert model_transformed.get_tensor_layout(mul_output) == data_layout + else: + assert model_transformed.graph.node[0] == model.graph.node[0] + assert model_transformed.graph.node[1] == model.graph.node[1] + if data_layout is not None: + mul_input = model_transformed.graph.node[1].input[0] + mul_output = model_transformed.graph.node[1].output[0] + assert model_transformed.get_tensor_layout(mul_input) != data_layout + assert model_transformed.get_tensor_layout(mul_output) != data_layout