diff --git a/tests/fpgadataflow/test_fpgadataflow_upsampler.py b/tests/fpgadataflow/test_fpgadataflow_upsampler.py index 25e5a107914b8e85f99e920f3649000a53b0ec86..f7e06adb816cfa664187f39a9567d4f742e4043b 100644 --- a/tests/fpgadataflow/test_fpgadataflow_upsampler.py +++ b/tests/fpgadataflow/test_fpgadataflow_upsampler.py @@ -29,12 +29,13 @@ import pytest import numpy as np -import tempfile +import os import torch from brevitas.export import FINNManager from torch import nn import finn.core.onnx_exec as oxe +import finn.transformation.streamline.absorb as absorb from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.transformation.base import Transformation @@ -46,8 +47,12 @@ from finn.transformation.fpgadataflow.prepare_ip import PrepareIP from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.infer_data_layouts import InferDataLayouts from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.infer_shapes import InferShapes +from finn.transformation.make_input_chanlast import MakeInputChannelsLast + +tmpdir = os.environ["FINN_BUILD_DIR"] class ForceDataTypeForTensors(Transformation): @@ -114,19 +119,18 @@ class PyTorchTestModel(nn.Module): @pytest.mark.parametrize("dt", [DataType.INT8]) # Width/height of square input feature map @pytest.mark.parametrize("IFMDim", [3, 5]) -# Width/height of square output feature map -@pytest.mark.parametrize("OFMDim", [6, 7, 14]) +# upscaling factor +@pytest.mark.parametrize("scale", [2, 3]) # Number of input/output channels -@pytest.mark.parametrize("NumChannels", [1, 4]) +@pytest.mark.parametrize("NumChannels", [4]) # execution mode @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.vivado @pytest.mark.slow -def test_fpgadataflow_upsampler(dt, IFMDim, OFMDim, NumChannels, exec_mode): - tmpdir = tempfile.mkdtemp() +def test_fpgadataflow_upsampler(dt, IFMDim, scale, NumChannels, exec_mode): atol = 1e-3 # Create the test model and inputs for it - torch_model = PyTorchTestModel(upscale_factor=OFMDim / IFMDim) + torch_model = PyTorchTestModel(upscale_factor=scale) input_shape = (1, NumChannels, IFMDim, IFMDim) test_in = torch.arange(0, np.prod(np.asarray(input_shape))) # Limit the input to values valid for the given datatype @@ -154,18 +158,16 @@ def test_fpgadataflow_upsampler(dt, IFMDim, OFMDim, NumChannels, exec_mode): # Prep model for execution model = ModelWrapper(export_path) - transpose_path = f"{tmpdir}/Upsample_transposed.onnx" - model = model.transform(TransposeUpsampleIO()) - model.save(transpose_path) - - hls_upsample_path = f"{tmpdir}/Upsample_hls.onnx" - model = ModelWrapper(transpose_path) + # model = model.transform(TransposeUpsampleIO()) + model = model.transform(MakeInputChannelsLast()) + model = model.transform(InferDataLayouts()) + model = model.transform(absorb.AbsorbTransposeIntoResize()) + model = model.transform(InferShapes()) model = model.transform(ForceDataTypeForTensors(dType=dt)) model = model.transform(GiveUniqueNodeNames()) model = model.transform(InferUpsample()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) - model.save(hls_upsample_path) # Check that all nodes are UpsampleNearestNeighbour_Batch nodes for n in model.get_finn_nodes(): @@ -191,24 +193,9 @@ def test_fpgadataflow_upsampler(dt, IFMDim, OFMDim, NumChannels, exec_mode): input_dict = {model.graph.input[0].name: test_in_transposed} output_dict = oxe.execute_onnx(model, input_dict, True) test_result = output_dict[model.graph.output[0].name] - - test_result_transposed = test_result.transpose(_to_chan_first_args) - output_matches = np.isclose(golden_result, test_result_transposed, atol=atol).all() + output_matches = np.isclose(golden_result, test_result, atol=atol).all() if exec_mode == "cppsim": assert output_matches, "Cppsim output doesn't match ONNX/PyTorch." elif exec_mode == "rtlsim": assert output_matches, "Rtlsim output doesn't match ONNX/PyTorch." - - # ToDo: Should this be done / implemented as well? - # if exec_mode == "rtlsim": - # hls_synt_res_est = model.analysis(hls_synth_res_estimation) - # assert "ChannelwiseOp_Batch_0" in hls_synt_res_est - # - # node = model.get_nodes_by_op_type("ChannelwiseOp_Batch")[0] - # inst = getCustomOp(node) - # cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim") - # exp_cycles_dict = model.analysis(exp_cycles_per_layer) - # exp_cycles = exp_cycles_dict[node.name] - # assert np.isclose(exp_cycles, cycles_rtlsim, atol=10) - # assert exp_cycles != 0