diff --git a/src/finn/transformation/streamline/reorder.py b/src/finn/transformation/streamline/reorder.py index cc95d34b784b47c9baeb6c1076915db8b1d09d57..3b5d32b1cb6784fcc22cc8dcff04c2842e729d6d 100644 --- a/src/finn/transformation/streamline/reorder.py +++ b/src/finn/transformation/streamline/reorder.py @@ -31,7 +31,9 @@ import warnings from onnx import helper as oh from finn.transformation import Transformation +import finn.core.data_layout as DataLayout from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes from finn.transformation.infer_data_layouts import InferDataLayouts from finn.core.datatype import DataType from finn.core.onnx_exec import execute_node @@ -674,7 +676,95 @@ class MoveMaxPoolPastMultiThreshold(Transformation): model = model.transform(InferShapes()) return (model, graph_modified) +class MoveFlattenPastAffine(Transformation): + """Moves a node that implements a (1, -1) reshape past a MatMul, Mul or Add node.""" + def apply(self, model): + graph = model.graph + graph_modified = False + node_ind = 0 + for n in graph.node: + node_ind += 1 + if ( + n.op_type == "Flatten" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): + consumer = model.find_consumer(n.output[0]) + if ( + consumer is not None + and ( + consumer.op_type == "MatMul" + or consumer.op_type == "Mul" + or consumer.op_type == "Add" + ) + and not model.is_join_node(consumer) + ): + # move flatten past operation and rewire tensors + start_name = n.input[0] + # check if datalyout is set to NHWC and H=W=1 + datalayout = model.get_tensor_layout(start_name) + if datalayout == DataLayout.NHWC: + (b, h, w, c) = model.get_tensor_shape(start_name) + if h != 1 or w != 1: + warnings.warn( + """The Transformation can only be performed if + H=W=1.""" + ) + continue + else: + warnings.warn( + """The Transformation can only be performed on + operations that operate on data layout NHWC.""" + ) + continue + middle_name = n.output[0] + end_name = consumer.output[0] + op_param_name = consumer.input[1] + A = model.get_initializer(op_param_name) + if A is None: + warnings.warn("Param is not constant, skipping") + continue + op_in_dt = model.get_tensor_datatype(consumer.input[0]) + op_out_dt = model.get_tensor_datatype(consumer.output[0]) + start_shape = model.get_tensor_shape(start_name) + dummy_in = np.random.uniform(low=0, high=1, size=(start_shape)) + + if consumer.op_type == "MatMul": + dummy_out = np.matmul(dummy_in, A) + elif consumer.op_type == "Mul": + dummy_out = dummy_in * A + elif consumer.op_type == "Add": + dummy_out = dummy_in + A + + new_op = oh.make_node( + consumer.op_type, + [start_name, op_param_name], + [middle_name], + name=consumer.name, + ) + new_flatten = oh.make_node("Flatten", [middle_name], [end_name]) + graph.node.insert(node_ind, new_op) + graph.node.insert(node_ind + 1, new_flatten) + model.set_tensor_shape(middle_name, dummy_out.shape) + # because a flatten node doesn't change the datatype we need + # only the datatype of the op node + model.set_tensor_datatype(start_name, op_in_dt) + model.set_tensor_datatype(middle_name, op_out_dt) + model.set_tensor_datatype(end_name, op_out_dt) + # set datalayout + model.set_tensor_layout(start_name, DataLayout.NHWC) + model.set_tensor_layout(middle_name, DataLayout.NHWC) + # remove old nodes + graph.node.remove(n) + graph.node.remove(consumer) + graph_modified = True + + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + model = model.transform(InferDataLayouts()) + return (model, graph_modified) + class MoveTransposePastScalarMul(Transformation): """Moves a Transpose node past a scalar Mul node""" @@ -736,3 +826,4 @@ class MoveTransposePastScalarMul(Transformation): model = model.transform(InferDataLayouts()) model = model.transform(InferShapes()) return (model, graph_modified) + diff --git a/tests/transformation/test_move_flatten_past_affine.py b/tests/transformation/test_move_flatten_past_affine.py new file mode 100644 index 0000000000000000000000000000000000000000..b2d5e51613d41f3f2db3dabcef7b982ec2816b19 --- /dev/null +++ b/tests/transformation/test_move_flatten_past_affine.py @@ -0,0 +1,106 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +import pytest + +import numpy as np +from onnx import TensorProto, helper + +from finn.core.modelwrapper import ModelWrapper +from finn.core.datatype import DataType +import finn.core.data_layout as DataLayout +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_data_layouts import InferDataLayouts +from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames +from finn.transformation.streamline.reorder import MoveFlattenPastAffine +import finn.core.onnx_exec as oxe + +# data layout +@pytest.mark.parametrize("data_layout", [DataLayout.NHWC, DataLayout.NCHW]) +# batch size +@pytest.mark.parametrize("batch_size", [1, 2]) +def test_move_flatten_past_affine(data_layout, batch_size): + if data_layout == DataLayout.NHWC: + ishape = [batch_size, 1, 1, 1024] + oshape = [batch_size, 1000] + else: + ishape = [batch_size, 1024, 1, 1] + oshape = [batch_size, 1000] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) + a0 = helper.make_tensor_value_info("a1", TensorProto.FLOAT, [1024, 1000]) + a1 = helper.make_tensor_value_info("a2", TensorProto.FLOAT, []) + a2 = helper.make_tensor_value_info("a3", TensorProto.FLOAT, [1000]) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, oshape) + + flatten_node = helper.make_node("Flatten", ["inp"], ["flatten_out"]) + matmul_node = helper.make_node("MatMul", ["flatten_out", "a0"], ["matmul_out"]) + mul_node = helper.make_node("Mul", ["matmul_out", "a1"], ["mul_out"]) + add_node = helper.make_node("Add", ["mul_out", "a2"], ["outp"]) + + graph = helper.make_graph( + nodes=[flatten_node, matmul_node, mul_node, add_node], + name="move-reshape-graph", + inputs=[inp], + outputs=[outp], + value_info=[a0, a1, a2], + ) + + model = helper.make_model(graph, producer_name="move_reshape_model") + model = ModelWrapper(model) + + # initialize values + a0_values = gen_finn_dt_tensor(DataType.TERNARY, [1024, 1000]) + model.set_initializer("a0", a0_values) + a1_values = np.random.uniform(low=0.1, high=0.99, size=(1)).astype(np.float32) + model.set_initializer("a1", a1_values) + a2_values = np.random.uniform(low=-1, high=1, size=(1000)).astype(np.float32) + model.set_initializer("a2", a2_values) + + model.set_tensor_datatype("inp", DataType.INT2) + model.set_tensor_layout("inp", data_layout) + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + model = model.transform(InferDataLayouts()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + + # compare execution before and after transformation + inp_values = gen_finn_dt_tensor(DataType.INT2, ishape) + idict = {model.graph.input[0].name: inp_values} + model_transformed = model.transform(MoveFlattenPastAffine()) + assert oxe.compare_execution(model, model_transformed, idict) + + # depending on data layout check if graph is transformed or not + if data_layout == DataLayout.NHWC: + # check if nodes have new order in transformed graph + assert model.graph != model_transformed.graph + assert model_transformed.graph.node[-1].op_type == "Flatten" + else: + assert model.graph == model_transformed.graph