From 9b1c84828b2b75c9467f1dd1f900aaf05f5574c5 Mon Sep 17 00:00:00 2001
From: auphelia <jakobapk@web.de>
Date: Mon, 9 Dec 2019 10:41:58 +0000
Subject: [PATCH] [notebook - code gen] Finished code generation part of the
 notebook

---
 .../FINN-CodeGenerationAndCompilation.ipynb   | 131 +++++++++++++++++-
 1 file changed, 128 insertions(+), 3 deletions(-)

diff --git a/notebooks/FINN-CodeGenerationAndCompilation.ipynb b/notebooks/FINN-CodeGenerationAndCompilation.ipynb
index d911d9dec..e3f0f03e8 100644
--- a/notebooks/FINN-CodeGenerationAndCompilation.ipynb
+++ b/notebooks/FINN-CodeGenerationAndCompilation.ipynb
@@ -30,7 +30,8 @@
     "## Outline\n",
     "-------------\n",
     "* <font size=\"3\">Example model</font>\n",
-    "* <font size=\"3\">Code generation</font>"
+    "* <font size=\"3\">Code generation</font>\n",
+    "* <font size=\"3\">Compilation</font>"
    ]
   },
   {
@@ -329,7 +330,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [
     {
@@ -385,7 +386,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [
     {
@@ -422,6 +423,130 @@
     "showSrc(StreamingFCLayer_Batch.code_generation)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<font size=\"3\">Except for the function `generate_params(model)` all functions needed to fill the template correspond to the `$ $` variable names, i.e. function `defines()` returns the part of the c++ code that replaces `$DEFINES$` in the template. The individual functions are member functions of the class HLSCustomOp and are defined in each CustomOp. The code for a StreamingFCLayer_Batch node can be looked up in the [code](https://github.com/Xilinx/finn/blob/dev/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py).</font> "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<font size=\"3\">A special function for code generation for the StreamingFCLayer_Batch node is the `generate_params(model)` function. Besides the normal input tensor, a fc layer has weight values as input and can get additional thresholds for activation. This function reads the values for the weights and thresholds via the `get_initializer` function of the ModelWrapper and writes them c++ conform in .h files, which are added to the includes. \n",
+    "\n",
+    "The `generate_params` function of the StreamingFCLayer_Batch is shown below.</font>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    def generate_params(self, model):\n",
+      "        # weights\n",
+      "        weights = model.get_initializer(self.onnx_node.input[1])\n",
+      "        # convert weights into hlslib-compatible format\n",
+      "        weight_tensor = self.get_hls_compatible_weight_tensor(weights)\n",
+      "        export_wdt = self.get_weight_datatype()\n",
+      "        # we have converted bipolar weights to binary for export,\n",
+      "        # so use it as such for weight generation\n",
+      "        if self.get_weight_datatype() == DataType.BIPOLAR:\n",
+      "            export_wdt = DataType.BINARY\n",
+      "        weight_hls_code = numpy_to_hls_code(\n",
+      "            weight_tensor, export_wdt, \"weights\", True, True\n",
+      "        )\n",
+      "        # write weights into params.h\n",
+      "        code_gen_dir = self.get_nodeattr(\"code_gen_dir\")\n",
+      "        f_weights = open(\"{}/params.h\".format(code_gen_dir), \"w\")\n",
+      "\n",
+      "        if export_wdt.bitwidth() != 1:\n",
+      "            f_weights.write(\n",
+      "                \"static FixedPointWeights<{},{},{},{}> weights = \".format(\n",
+      "                    self.get_nodeattr(\"SIMD\"),\n",
+      "                    export_wdt.get_hls_datatype_str(),\n",
+      "                    self.get_nodeattr(\"PE\"),\n",
+      "                    self.calc_wmem(),\n",
+      "                )\n",
+      "            )\n",
+      "        else:\n",
+      "            f_weights.write(\n",
+      "                \"static BinaryWeights<{},{},{}> weights = \".format(\n",
+      "                    self.get_nodeattr(\"SIMD\"), self.get_nodeattr(\"PE\"), self.calc_wmem()\n",
+      "                )\n",
+      "            )\n",
+      "        f_weights.write(weight_hls_code)\n",
+      "        f_weights.close()\n",
+      "        # thresholds\n",
+      "        if len(self.onnx_node.input) > 2:\n",
+      "            thresholds = model.get_initializer(self.onnx_node.input[2])\n",
+      "            if thresholds is not None:\n",
+      "                threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds)\n",
+      "                tdt = DataType.INT32\n",
+      "                # use UINT32 threshold export for bipolar times bipolar\n",
+      "                inp_is_bipolar = self.get_input_datatype() == DataType.BIPOLAR\n",
+      "                wt_is_bipolar = self.get_weight_datatype() == DataType.BIPOLAR\n",
+      "                # reinterpret inp/wt as bipolar if bin_xnor_mode is iset\n",
+      "                inp_is_binary = self.get_input_datatype() == DataType.BINARY\n",
+      "                wt_is_binary = self.get_weight_datatype() == DataType.BINARY\n",
+      "                bin_xnor_mode = self.get_nodeattr(\"binaryXnorMode\") == 1\n",
+      "                inp_is_bipolar = inp_is_bipolar or (inp_is_binary and bin_xnor_mode)\n",
+      "                wt_is_bipolar = wt_is_bipolar or (wt_is_binary and bin_xnor_mode)\n",
+      "                if inp_is_bipolar and wt_is_bipolar:\n",
+      "                    tdt = DataType.UINT32\n",
+      "                thresholds_hls_code = numpy_to_hls_code(\n",
+      "                    threshold_tensor, tdt, \"thresholds\", False, True\n",
+      "                )\n",
+      "                # write thresholds into thresh.h\n",
+      "                code_gen_dir = self.get_nodeattr(\"code_gen_dir\")\n",
+      "                f_thresh = open(\"{}/thresh.h\".format(code_gen_dir), \"w\")\n",
+      "                tdt_hls = tdt.get_hls_datatype_str()\n",
+      "                # use binary to export bipolar activations\n",
+      "                export_odt = self.get_output_datatype()\n",
+      "                if self.get_output_datatype() == DataType.BIPOLAR:\n",
+      "                    export_odt = DataType.BINARY\n",
+      "                odt_hls = export_odt.get_hls_datatype_str()\n",
+      "                f_thresh.write(\n",
+      "                    \"static ThresholdsActivation<{},{},{},{},{},{},{}> threshs \\\n",
+      "                     = \".format(\n",
+      "                        self.calc_tmem(),\n",
+      "                        self.get_nodeattr(\"PE\"),\n",
+      "                        threshold_tensor.shape[-1],\n",
+      "                        tdt_hls,\n",
+      "                        odt_hls,\n",
+      "                        self.get_nodeattr(\"ActVal\"),\n",
+      "                        \"std::less_equal<%s>\" % tdt_hls,\n",
+      "                    )\n",
+      "                )\n",
+      "                f_thresh.write(thresholds_hls_code)\n",
+      "                f_thresh.close()\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "showSrc(StreamingFCLayer_Batch.generate_params)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<font size=\"3\">The generated code is written to the previously created temporary directory and the node attribute `code_gen_dir` is set. This completes the code generation for executing a single CustomOp and the next step is compilation. </font>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Compilation"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-- 
GitLab