diff --git a/tests/transformation/test_infer_data_layouts.py b/tests/transformation/test_infer_data_layouts.py new file mode 100644 index 0000000000000000000000000000000000000000..fccc7813da6f98c8af4ade7ae562c99b32247a8b --- /dev/null +++ b/tests/transformation/test_infer_data_layouts.py @@ -0,0 +1,113 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os + +import brevitas.onnx as bo +import finn.transformation.streamline.absorb as absorb +from finn.transformation.streamline.reorder import MakeMaxPoolNHWC +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline import Streamline +from finn.util.test import get_test_model_trained +from finn.transformation.double_to_single_float import DoubleToSingleFloat +from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul +from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount +import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls +from finn.transformation.infer_data_layouts import InferDataLayouts +import finn.core.data_layout as DataLayout + +export_onnx_path_cnv = "test_output_cnv.onnx" + + +def test_infer_data_layouts(): + cnv = get_test_model_trained("CNV", 1, 1) + bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv) + model = ModelWrapper(export_onnx_path_cnv) + model = model.transform(DoubleToSingleFloat()) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(Streamline()) + model = model.transform(InferDataLayouts()) + + assert model.get_tensor_layout("global_in") == DataLayout.NCHW + assert model.get_tensor_layout("Conv_0_out0") == DataLayout.NCHW + assert model.get_tensor_layout("MaxPool_0_out0") == DataLayout.NCHW + assert model.get_tensor_layout("MultiThreshold_6_out0") == DataLayout.NCHW + assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC + assert model.get_tensor_layout("MatMul_0_out0") == DataLayout.NC + assert model.get_tensor_layout("global_out") == DataLayout.NC + + model = model.transform(LowerConvsToMatMul()) + model = model.transform(MakeMaxPoolNHWC()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataLayouts()) + + assert model.get_tensor_layout("global_in") == DataLayout.NCHW + assert model.get_tensor_layout("Transpose_0_out0") == DataLayout.NHWC + assert model.get_tensor_layout("Im2Col_0_out0") == DataLayout.NHWC + # note: im2col output isn't really NHWC or any other common layout + # since the concept of channels changes with lowering... but it is + # conceptually close to NHWC since the innermost dim gets multiplied + assert model.get_tensor_layout("MatMul_0_out0") == DataLayout.NHWC + assert model.get_tensor_layout("Transpose_1_out0") == DataLayout.NCHW + assert model.get_tensor_layout("Transpose_2_out0") == DataLayout.NHWC + assert model.get_tensor_layout("MaxPoolNHWC_0_out0") == DataLayout.NHWC + assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC + assert model.get_tensor_layout("global_out") == DataLayout.NC + + model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) + model = model.transform(ConvertBipolarMatMulToXnorPopcount()) + model = model.transform(Streamline()) + model = model.transform(to_hls.InferBinaryStreamingFCLayer()) + model = model.transform(to_hls.InferQuantizedStreamingFCLayer()) + model = model.transform(to_hls.InferConvInpGen()) + model = model.transform(to_hls.InferStreamingMaxPool()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataLayouts()) + + assert model.get_tensor_layout("global_in") == DataLayout.NCHW + assert model.get_tensor_layout("Transpose_0_out0") == DataLayout.NHWC + # note: im2col output isn't really NHWC or any other common layout + # since the concept of channels changes with lowering... but it is + # conceptually close to NHWC since the innermost dim gets multiplied + assert ( + model.get_tensor_layout("ConvolutionInputGenerator_0_out0") == DataLayout.NHWC + ) + assert model.get_tensor_layout("StreamingFCLayer_Batch_3_out0") == DataLayout.NHWC + assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC + assert model.get_tensor_layout("StreamingFCLayer_Batch_6_out0") == DataLayout.NC + assert model.get_tensor_layout("global_out") == DataLayout.NC + + os.remove(export_onnx_path_cnv)